Sains Malaysiana 46(5)(2017): 803–815
http://dx.doi.org/10.17576/jsm-2017-4605-15
Darcian
Natural Convection in an Inclined Trapezoidal Cavity Partly Filled with a
Porous Layer and Partly with a Nanofluid Layer
(Perolakan
Semula Jadi Darcian dalam Rongga Trapezium Condong yang Sebahagiannya
Dipenuhi
dengan Lapisan
Berliang dan Sebahagiannya dengan Lapisan Nanobendalir)
A.I. ALSABERY1, A.J. CHAMKHA2,3, H. SALEH1, I. HASHIM1*
& B. CHANANE4
1School of
Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of
Mechanical Engineering, Prince Mohammad Bin Fahd University
P.O. Box 1664, Al Khobar 31952, Saudi Arabia
3Prince Sultan
Endowment for Energy and Environment, Prince Mohammad Bin Fahd University
Al-Khobar 31952, Saudi Arabia
4Department
of Mathematics and Statistics, King Fahd University
of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
Received: 22 February 2016/Accepted: 1 November 2016
ABSTRACT
The problem of Darcian natural convection in a trapezoidal cavity
partly filled with porous layer and partly with nanofluid
layer is studied numerically using finite difference method.
The left slopping wall is maintained at a constant hot temperature
and the right slopping wall is maintained at a constant cold
temperature, while the horizontal walls are adiabatic. Water-based
nanofluids with Ag or Cu or TiO2 nanoparticles
are chosen for the investigation. The governing parameters
of this study are the Rayleigh number (104 ≤ Ra ≤ 107),
Darcy number (10–5 ≤ Da ≤ 10–3),
nanoparticle volume fraction (0 ≤ φ ≤ 0.2), porous
layer thickness (0.3 ≤ S ≤ 0,7), the side wall inclination
angle (0° ≤ ϕ ≤ 21.8°) and the inclination angle
of the cavity (0° ≤ ϖ ≤ 90°). Explanation
for the influence of various above-mentioned parameters on
streamlines, isotherms and overall heat transfer is provided
on the basis of thermal conductivities of nanoparticles, water
and porous medium. It is shown that convection increases remarkably
by the addition of silver-water nanofluid and the heat transfer
rate is affected by the inclination angle of the cavity variation.
The results have possible applications in heat-removal and
heat-storage fluid-saturated porous systems.
Keywords: Darcy model; nanofluid; natural convection; partially
filled; porous media
ABSTRAK
Masalah perolakan semula jadi Darcian dalam rongga trapezium yang
sebahagiannya dipenuhi dengan lapisan berliang dan sebahagiannya
dengan lapisan nanobendalir dikaji secara berangka menggunakan
kaedah perbezaan terhingga. Dinding cerun sebelah kiri dikekalkan
pada suhu panas tetap yang berterusan dan dinding cerun kanan
dikekalkan pada suhu sejuk berterusan, manakala dinding mendatar
secara adiabatik. Nanobendalir berasaskan air dengan zarah
nano Ag atau Cu atau TiO telah dipilih untuk kajian. Parameter
penentu kajian ini adalah nombor Rayleigh (104 ≤ Ra ≤ 107),
nombor Darcy (10–5 ≤ Da ≤ 10–3),
pecahan isi padu zarah nano (0 ≤ φ ≤ 0.2), ketebalan
lapisan berliang (0.3 ≤ S ≤ 0,7), sebelah dinding sudut
condong (0° ≤ ϕ ≤ 21.8°) dan sudut condong berongga
(0° ≤ ϖ ≤ 90°). Penjelasan untuk
pengaruh pelbagai parameter yang tersebut ke atas garis strim,
isoterma dan pemindahan haba keseluruhan juga disediakan berdasarkan
terma kekonduksian zarah nano, air dan medium berliang. Ia
menunjukkan bahawa perolakan meningkat secara luar biasa dengan
penambahan bendalir nano air-perak dan kadar pemindahan haba
dipengaruhi oleh sudut condong variasi berongga. Keputusan
ini mempunyai potensi pengaplikasian dalam sistem pemindahan
haba dan penyimpanan haba cecair-tepu berliang.
Kata kunci: Nanobendalir;
media berliang; model Darcy; perolakan semula jadi; sebahagiannya
diisi
REFERENCES
Abouali, O. & Falahatpisheh, A. 2009. Numerical
investigation of natural convection of al2o3 nanofluid in vertical annuli. Heat and
Mass Transfer 46(1): 15-23.
Al-Nimr, M. & Alkam, M. 1998. Unsteady non-Darcian fluid
flow in parallel-plates channels partially filled with porous materials. Heat
and Mass Transfer 33(4): 315-318.
Alloui, Z., Vasseur, P. & Reggio, M. 2011. Natural
convection of nanofluids in a shallow cavity heated from below. International
Journal of Thermal Sciences 50(3): 393-385.
Alsabery, A., Saleh, H., Arbin, N. & Hashim, I. 2015.
Unsteady natural convection in a square cavity partially filled with porous
media using a thermal non-equilibrium model. International Journal of
Mathematical, Computational, Physical and Quantum Engineering 9(1): 2-7.
Beavers, G.S. & Joseph, D.D. 1967. Boundary conditions
at a naturally permeable wall. Journal of Fluid Mechanics 30(01):
197-207.
Beckermann, C., Ramadhyani, S. & Viskanta, R. 1987.
Natural convection flow and heat transfer between a fluid layer and a porous
layer inside a rectangular enclosure. Journal of Heat transfer 109(2):
363-370.
Beckermann, C., Viskanta, R. & Ramadhyani, S. 1988.
Natural convection in vertical enclosures containing simultaneously fluid and
porous layers. Journal of Fluid Mechanics 186: 257-284.
Bejan, A., Dincer, I., Lorente, S., Miguel, A. & Reis,
H. 2013. Porous and Complex Flow Structures in Modern Technologies. New
York: Springer Science & Business Media.
Chamkha, A.J. & Ismael, M.A. 2014. Natural convection in
differentially heated partially porous layered cavities filled with a
nanofluid. Numerical Heat Transfer, Part A: Applications 65(11):
1089-1113.
Chamkha, A.J., Selimefendigil, F. & Ismael, M.A. 2016.
Mixed convection in a partially layered porous cavity with inner rotating
cylinder. Numerical Heat Transfer, Part A 69: 659- 675.
Chen, X., Yu, P., Sui, Y., Winoto, S. & Low, H. 2009.
Natural convection in a cavity filled with porous layers on the top and bottom
walls. Transport in Porous Media 78(2): 259-276.
Goyeau, B., Lhuillier, D., Gobin, D. & Velarde, M. 2003.
Momentum transport at a fluid-porous interface. International Journal of
Heat and Mass Transfer 46(21): 4071-4081.
Heris, S.Z., Pour, M.B., Mahian, O. & Wongwises, S.
2014. A comparative experimental study on the natural convection heat transfer
of different metal oxide nanopowders suspended in turbine oil inside an
inclined cavity. International Journal of Heat and Mass Transfer 73:
231-238.
Jahanshahi, M., Hosseinizadeh, S., Alipanah, M., Dehghani,
A. & Vakilinejad, G. 2010. Numerical simulation of free convection based on
experimental measured conductivity in a square cavity using water/sio2 nanofluid. International Communications in
Heat and Mass Transfer 37(6): 687-694.
Jiang, H., Zhang, Q. & Shi, L. 2015. Effective thermal
conductivity of carbon nanotube-based nanofluid. Journal of the Taiwan
Institute of Chemical Engineers 55: 76-81.
Jou, R.Y. & Tzeng, S.C. 2006. Numerical research of
nature convective heat transfer enhancement filled with nanofluids in
rectangular enclosures. International Communications in Heat and Mass
Transfer 33(6): 727-736.
Kakac, S. & Pramuanjaroenkij, A. 2009. Review of
convective heat transfer enhancement with nanofluids. International Journal
of Heat and Mass Transfer 52(13): 3187-3196.
Karyakin, Y.E. 1989. Transient natural convection in
prismatic enclosures of arbitrary cross-section. International Journal of
Heat and Mass Transfer 32(6): 1095-1103.
Khanafer, K., Vafai, K. & Lightstone, M. 2003.
Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure
utilizing nanofluids. International Journal of Heat and Mass Transfer 46(19):
3639-3653.
Lee, T. 1984. Computational and experimental studies of
convective fluid motion and heat transfer in inclined non-rectangular
enclosures. International Journal of Heat and Fluid Flow 5(1): 29-36.
Mharzi, M., Daguenet, M. & Daoudi, S. 2000.
Thermosolutal natural convection in a vertically layered fluid-porous medium
heated from the side. Energy Conversion and Management 41(10):
1065-1090.
Mohamed, M.K.A., Noar, N.A.Z.M., Salleh, M.Z. & Ishak,
A. 2016. Free convection boundary layer flow on a horizontal circular cylinder
in a nanofluid with viscous dissipation. Sains Malaysiana 45(2):
289-296.
Nasrin, R. & Parvin, S. 2012. Investigation of
buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water–cu nanofluid. International
Communications in Heat and Mass Transfer 39(2): 270-274.
Nield, D.A. & Bejan, A. 2006. Convection in Porous
Media. New York: Springer Science & Business Media.
Pop, I. & Ingham, D.B. 2001. Convective Heat
Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous
Media. Cluj: Elsevier.
Poulikakos, D., Bejan, A., Selimos, B. & Blake, K. 1986.
High rayleigh number convection in a fluid overlaying a porous bed. International
Journal of Heat and Fluid Flow 7(2): 109-116.
Putra, N., Roetzel, W. & Das, S.K. 2003. Natural convection
of nano-fluids. Heat and Mass Transfer 39(8-9): 775-784.
Saleh, H., Roslan, R. & Hashim, I. 2011. Natural
convection heat transfer in a nanofluid-filled trapezoidal enclosure. International
Journal of Heat and Mass Transfer 54(1): 194-201.
Santra, A.K., Sen, S. & Chakraborty, N. 2008. Study of
heat transfer augmentation in a differentially heated square cavity using
copper-water nanofluid. International Journal of Thermal Sciences 47(9):
1113-1122.
Sathe, S., Lin, W.Q. & Tong, T. 1988. Natural convection
in enclosures containing an insulation with a permeable fluid-porous interface. International Journal of Heat and Fluid Flow 9(4): 389-395.
Sheremet, M.A., Grosan, T. & Pop, I. 2015. Free
convection in a square cavity filled with a porous medium saturated by
nanofluid using Tiwari and Das’ nanofluid model. Transport in Porous Media 106(3):
595-610.
Singh, A. & Thorpe, G. 1995. Natural convection in a
confined fluid overlying a porous layer-a comparison study of different models. Indian Journal of Pure and Applied Mathematics 26: 81-95.
Su, F., Ma, X. & Lan, Z. 2011. The effect of carbon
nanotubes on the physical properties of a binary nanofluid. Journal of the
Taiwan Institute of Chemical Engineers 42(2): 252-257.
Tham, L. & Nazar, R. 2012. Mixed convection flow about a
solid sphere embedded in a porous medium filled with a nanofluid. Sains
Malaysiana 41(12): 1643-1649.
Tiwari, R.K. & Das, M.K. 2007. Heat transfer
augmentation in a two-sided lid-driven differentially heated square cavity
utilizing nanofluids. International Journal of Heat and Mass Transfer 50(9):
2002-2018.
Wang, X.Q. & Mujumdar, A.S. 2007. Heat transfer
characteristics of nanofluids: A review. International Journal of Thermal
Sciences 46(1): 1-19.
*Corresponding
author; email: ishak_h@ukm.edu.my