Sains Malaysiana 46(5)(2017): 803–815

http://dx.doi.org/10.17576/jsm-2017-4605-15

 

Darcian Natural Convection in an Inclined Trapezoidal Cavity Partly Filled with a Porous Layer and Partly with a Nanofluid Layer

(Perolakan Semula Jadi Darcian dalam Rongga Trapezium Condong yang Sebahagiannya Dipenuhi

dengan Lapisan Berliang dan Sebahagiannya dengan Lapisan Nanobendalir)

 

A.I. ALSABERY1, A.J. CHAMKHA2,3, H. SALEH1, I. HASHIM1* & B. CHANANE4

 

1School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Mechanical Engineering, Prince Mohammad Bin Fahd University

P.O. Box 1664, Al Khobar 31952, Saudi Arabia

 

3Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University

Al-Khobar 31952, Saudi Arabia

 

4Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia

 

Received: 22 February 2016/Accepted: 1 November 2016

 

ABSTRACT

The problem of Darcian natural convection in a trapezoidal cavity partly filled with porous layer and partly with nanofluid layer is studied numerically using finite difference method. The left slopping wall is maintained at a constant hot temperature and the right slopping wall is maintained at a constant cold temperature, while the horizontal walls are adiabatic. Water-based nanofluids with Ag or Cu or TiO2 nanoparticles are chosen for the investigation. The governing parameters of this study are the Rayleigh number (104 ≤ Ra ≤ 107), Darcy number (10–5 ≤ Da ≤ 10–3), nanoparticle volume fraction (0 ≤ φ ≤ 0.2), porous layer thickness (0.3 ≤ S ≤ 0,7), the side wall inclination angle (0° ≤ ϕ ≤ 21.8°) and the inclination angle of the cavity (0° ≤ ϖ ≤ 90°). Explanation for the influence of various above-mentioned parameters on streamlines, isotherms and overall heat transfer is provided on the basis of thermal conductivities of nanoparticles, water and porous medium. It is shown that convection increases remarkably by the addition of silver-water nanofluid and the heat transfer rate is affected by the inclination angle of the cavity variation. The results have possible applications in heat-removal and heat-storage fluid-saturated porous systems.

 

Keywords: Darcy model; nanofluid; natural convection; partially filled; porous media

 

 

ABSTRAK

Masalah perolakan semula jadi Darcian dalam rongga trapezium yang sebahagiannya dipenuhi dengan lapisan berliang dan sebahagiannya dengan lapisan nanobendalir dikaji secara berangka menggunakan kaedah perbezaan terhingga. Dinding cerun sebelah kiri dikekalkan pada suhu panas tetap yang berterusan dan dinding cerun kanan dikekalkan pada suhu sejuk berterusan, manakala dinding mendatar secara adiabatik. Nanobendalir berasaskan air dengan zarah nano Ag atau Cu atau TiO telah dipilih untuk kajian. Parameter penentu kajian ini adalah nombor Rayleigh (104 ≤ Ra ≤ 107), nombor Darcy (10–5 ≤ Da ≤ 10–3), pecahan isi padu zarah nano (0 ≤ φ ≤ 0.2), ketebalan lapisan berliang (0.3 ≤ S ≤ 0,7), sebelah dinding sudut condong (0° ≤ ϕ ≤ 21.8°) dan sudut condong berongga (0° ≤ ϖ ≤ 90°). Penjelasan untuk pengaruh pelbagai parameter yang tersebut ke atas garis strim, isoterma dan pemindahan haba keseluruhan juga disediakan berdasarkan terma kekonduksian zarah nano, air dan medium berliang. Ia menunjukkan bahawa perolakan meningkat secara luar biasa dengan penambahan bendalir nano air-perak dan kadar pemindahan haba dipengaruhi oleh sudut condong variasi berongga. Keputusan ini mempunyai potensi pengaplikasian dalam sistem pemindahan haba dan penyimpanan haba cecair-tepu berliang.

 

Kata kunci: Nanobendalir; media berliang; model Darcy; perolakan semula jadi; sebahagiannya diisi

REFERENCES

Abouali, O. & Falahatpisheh, A. 2009. Numerical investigation of natural convection of al2o3 nanofluid in vertical annuli. Heat and Mass Transfer 46(1): 15-23.

Al-Nimr, M. & Alkam, M. 1998. Unsteady non-Darcian fluid flow in parallel-plates channels partially filled with porous materials. Heat and Mass Transfer 33(4): 315-318.

Alloui, Z., Vasseur, P. & Reggio, M. 2011. Natural convection of nanofluids in a shallow cavity heated from below. International Journal of Thermal Sciences 50(3): 393-385.

Alsabery, A., Saleh, H., Arbin, N. & Hashim, I. 2015. Unsteady natural convection in a square cavity partially filled with porous media using a thermal non-equilibrium model. International Journal of Mathematical, Computational, Physical and Quantum Engineering 9(1): 2-7.

Beavers, G.S. & Joseph, D.D. 1967. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics 30(01): 197-207.

Beckermann, C., Ramadhyani, S. & Viskanta, R. 1987. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. Journal of Heat transfer 109(2): 363-370.

Beckermann, C., Viskanta, R. & Ramadhyani, S. 1988. Natural convection in vertical enclosures containing simultaneously fluid and porous layers. Journal of Fluid Mechanics 186: 257-284.

Bejan, A., Dincer, I., Lorente, S., Miguel, A. & Reis, H. 2013. Porous and Complex Flow Structures in Modern Technologies. New York: Springer Science & Business Media.

Chamkha, A.J. & Ismael, M.A. 2014. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numerical Heat Transfer, Part A: Applications 65(11): 1089-1113.

Chamkha, A.J., Selimefendigil, F. & Ismael, M.A. 2016. Mixed convection in a partially layered porous cavity with inner rotating cylinder. Numerical Heat Transfer, Part A 69: 659- 675.

Chen, X., Yu, P., Sui, Y., Winoto, S. & Low, H. 2009. Natural convection in a cavity filled with porous layers on the top and bottom walls. Transport in Porous Media 78(2): 259-276.

Goyeau, B., Lhuillier, D., Gobin, D. & Velarde, M. 2003. Momentum transport at a fluid-porous interface. International Journal of Heat and Mass Transfer 46(21): 4071-4081.

Heris, S.Z., Pour, M.B., Mahian, O. & Wongwises, S. 2014. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. International Journal of Heat and Mass Transfer 73: 231-238.

Jahanshahi, M., Hosseinizadeh, S., Alipanah, M., Dehghani, A. & Vakilinejad, G. 2010. Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/sio2 nanofluid. International Communications in Heat and Mass Transfer 37(6): 687-694.

Jiang, H., Zhang, Q. & Shi, L. 2015. Effective thermal conductivity of carbon nanotube-based nanofluid. Journal of the Taiwan Institute of Chemical Engineers 55: 76-81.

Jou, R.Y. & Tzeng, S.C. 2006. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. International Communications in Heat and Mass Transfer 33(6): 727-736.

Kakac, S. & Pramuanjaroenkij, A. 2009. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer 52(13): 3187-3196.

Karyakin, Y.E. 1989. Transient natural convection in prismatic enclosures of arbitrary cross-section. International Journal of Heat and Mass Transfer 32(6): 1095-1103.

Khanafer, K., Vafai, K. & Lightstone, M. 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46(19): 3639-3653.

Lee, T. 1984. Computational and experimental studies of convective fluid motion and heat transfer in inclined non-rectangular enclosures. International Journal of Heat and Fluid Flow 5(1): 29-36.

Mharzi, M., Daguenet, M. & Daoudi, S. 2000. Thermosolutal natural convection in a vertically layered fluid-porous medium heated from the side. Energy Conversion and Management 41(10): 1065-1090.

Mohamed, M.K.A., Noar, N.A.Z.M., Salleh, M.Z. & Ishak, A. 2016. Free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation. Sains Malaysiana 45(2): 289-296.

Nasrin, R. & Parvin, S. 2012. Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water–cu nanofluid. International Communications in Heat and Mass Transfer 39(2): 270-274.

Nield, D.A. & Bejan, A. 2006. Convection in Porous Media. New York: Springer Science & Business Media.

Pop, I. & Ingham, D.B. 2001. Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Cluj: Elsevier.

Poulikakos, D., Bejan, A., Selimos, B. & Blake, K. 1986. High rayleigh number convection in a fluid overlaying a porous bed. International Journal of Heat and Fluid Flow 7(2): 109-116.

Putra, N., Roetzel, W. & Das, S.K. 2003. Natural convection of nano-fluids. Heat and Mass Transfer 39(8-9): 775-784.

Saleh, H., Roslan, R. & Hashim, I. 2011. Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure. International Journal of Heat and Mass Transfer 54(1): 194-201.

Santra, A.K., Sen, S. & Chakraborty, N. 2008. Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. International Journal of Thermal Sciences 47(9): 1113-1122.

Sathe, S., Lin, W.Q. & Tong, T. 1988. Natural convection in enclosures containing an insulation with a permeable fluid-porous interface. International Journal of Heat and Fluid Flow 9(4): 389-395.

Sheremet, M.A., Grosan, T. & Pop, I. 2015. Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transport in Porous Media 106(3): 595-610.

Singh, A. & Thorpe, G. 1995. Natural convection in a confined fluid overlying a porous layer-a comparison study of different models. Indian Journal of Pure and Applied Mathematics 26: 81-95.

Su, F., Ma, X. & Lan, Z. 2011. The effect of carbon nanotubes on the physical properties of a binary nanofluid. Journal of the Taiwan Institute of Chemical Engineers 42(2): 252-257.

Tham, L. & Nazar, R. 2012. Mixed convection flow about a solid sphere embedded in a porous medium filled with a nanofluid. Sains Malaysiana 41(12): 1643-1649.

Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer 50(9): 2002-2018.

Wang, X.Q. & Mujumdar, A.S. 2007. Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences 46(1): 1-19.

 

 

*Corresponding author; email: ishak_h@ukm.edu.my

 

 

 

previous