Sains Malaysiana 46(5)(2017): 817–824
http://dx.doi.org/10.17576/jsm-2017-4605-16
Numerical
Algorithm of Block Method for General Second Order ODEs using Variable
Step Size
(Algoritma
Berangka Kaedah Blok bagi ODE Umum Peringkat
Kedua Menggunakan Pemboleh Ubah Saiz Langkah)
NAZREEN WAELEH1*
& ZANARIAH ABDUL MAJID2
1Faculty of Electronic
& Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM)
Hang Tuah Jaya, 76100 Durian Tunggal, Melaka Bandaraya
Bersejarah, Malaysia
2Institute for Mathematical
Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 26 January 2016/Accepted: 1 November 2016
ABSTRACT
This paper outlines an alternative algorithm for solving general
second order ordinary differential equations (ODEs).
Normally, the numerical method was designed for solving higher order ODEs
by converting it into an n-dimensional first order equations with implementation of constant step length. Nevertheless, this involved a lot
of computational complexity which led to consumption a lot of time.
Consequently, a direct block multistep method with utilization of variable step
size strategy is proposed. This method was developed for computing the solution
at four points simultaneously and the derivation based on numerical integration
as well as using interpolation approach. The convergence of the proposed method
is justified under suitable conditions of stability and consistency. Five
numerical examples are considered and some comparisons are made with the
existing methods for demonstrating the validity and reliability of the proposed
algorithm.
Keywords: Block method; general second order ordinary differential
equations; variable step size
ABSTRAK
Kertas ini menggariskan satu algoritma alternatif
untuk menyelesaikan persamaan pembezaan biasa (ODE)
umum peringkat kedua. Kebiasaannya, kaedah berangka untuk menyelesaikan ODE
peringkat tinggi direka dengan menukarkan ia
ke dalam n-dimensi persamaan peringkat pertama dengan perlaksanaan
panjang langkah kekal. Walau bagaimanapun,
ini melibatkan kerumitan pengiraan yang membawa kepada penggunaan
masa yang banyak. Oleh yang demikian, satu kaedah langsung
pelbagai langkah blok dengan penggunaan
strategi saiz langkah berubah dicadangkan. Kaedah
ini dibangunkan bagi menghitung penyelesaian pada empat titik
secara serentak dan terbitannya berdasarkan integrasi berangka
serta menggunakan pendekatan interpolasi. Penumpuan
kaedah yang dicadangkan dijustifikasi mengikut syarat kestabilan
dan tekal yang sesuai. Terdapat lima
contoh berangka dipertimbangkan dan beberapa perbandingan
telah dibuat dengan kaedah yang sedia ada untuk menunjukkan
kesahan dan kebolehpercayaan algoritma yang dicadangkan.
Kata kunci: Kaedah blok; persamaan pembezaan biasa
umum peringkat kedua; saiz langkah berubah
REFERENCES
Abdelrahim, R. & Omar, Z. 2016. Direct solution of second-order ordinary differential equation using a single-step
hybrid block method of order five. Mathematical and Computational
Applications 21(2): 12.
Anakira, N.R., Alomari, A.K. & Hashim, I.
2013. Numerical scheme for solving singular two-point
boundary value problems. Journal of Applied Mathematics 2013:
1-8.
Cash, J.R. 1983. Block Runge-Kutta methods for the numerical
integration of initial value problems in ordinary differential equations. Part
I. The nonstiff case. Mathematics of Computation 40(161):
175-191.
Cash, J.R. & Girdlestone, S. 2006. Variable
step Runge-Kutta- Nyström methods for the numerical solution of reversible
systems. Journal of Numerical Analysis, Industrial and Applied Mathematics 1(1):
59-80.
Fatunla, S.O. 1991. Block methods for second
order ODEs. International Journal of Computer Mathematics 41(1-2):
55-63.
Hairer, E., Norsett, S.P. & Wanner, G. 1987. Solving Ordinary Differential Equations I : Nonstiff Problems. Berlin: Springer- Verlag.
Jator, S.N. 2012. A continuous two-step method of order 8
with a block extension for y’’= f (x, y, y’). Applied Mathematics and
Computation 219(3): 781-791.
Jikantoro, Y.D., Ismail, F. & Senu, N. 2015.
Zero-dissipative trigonometrically fitted hybrid method for numerical solution
of oscillatory problems. Sains Malaysiana 44(3): 473-482.
Kayode, S.J. 2008. An efficient
zero-stable numerical method for fourth-order differential equations. International
Journal of Mathematics and Mathematical Sciences 2008: 1-10.
Lambert, J.D. 1973. Computational Methods in Ordinary
Differential Equations. New York: John Wiley & Sons. Inc.
Majid, Z.A.
& Suleiman, M. 2006. Direct integration implicit variable
steps method for solving higher order systems of ordinary
differential equations directly. Sains Malaysiana 35(2):
63-68.
Majid, Z.A., Azmi, N.A., Suleiman, M.
& Ibrahaim, Z.B. 2012. Solving directly general third order
ordinary differential equations using two-point four step
block method. Sains Malaysiana 41(5): 623-632.
Milne, W.E. 1953. Numerical Solution
of Differential Equations. New York: John
Wiley & Sons. Inc.
Omar, Z. & Suleiman, M. 2005. Solving higher order ordinary differential equations using
parallel 2-point explicit block method. Matematika 21(1): 15-23.
Pandey, P.K. 2014. Rational finite
difference approximation of high order accuracy for nonlinear two point
boundary value problems. Sains Malaysiana 43(7): 1105-1108.
Rosser, J.B. 1967. A Runge-Kutta for all seasons. SIAM
Review 9(3): 417-452.
Waeleh, N., Majid, Z.A.,
Ismail, F. & Suleiman, M. 2011a. Numerical solution
of higher order ordinary differential equations by
direct block code. Journal of Mathematics and Statistics
8(1): 77-81.
Waeleh, N., Majid, Z.A. & Ismail,
F. 2011b. A new algorithm for
solving higher order IVPs of ODEs. Applied Mathematical Sciences 5(56):
2795-2805.
Yap, L.K. & Ismail, F. 2016. Ninth order block hybrid collocation method for second
order ordinary differential equations. AIP Conference
Proceedings 1705, 020006. doi: http://dx.doi.
org/10.1063/1.4940254.
*Corresponding
author; email: nazreen@utem.edu.my