Sains Malaysiana 46(7)(2017): 1061–1067

http://dx.doi.org/10.17576/jsm-2017-4607-07

 

Pencirian Pertumbuhan Lapisan Nano Grafin di atas Elektrod antara Digit Superkapasitor MEMS

(Characterization of Graphene Nanolayers Grown on MEMS Interdigital Supercapacitor Electrode)

 

HAFZALIZA ERNY ZAINAL ABIDIN, AZRUL AZLAN HAMZAH* & BURHANUDDIN

YEOP MAJLIS

 

Institute of Microengineering and Nanoelectronics (IMEN). Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 23 December 2016/Accepted: 17 February 2017

 

ABSTRAK

Superkapasitor MEMS khususnya dengan reka bentuk elektrod antara digit (IDE), telah menarik minat pada masa kini dalam bidang seperti bioMEMS, bioperubatan implan, peranti kuasa elektronik dan aplikasi berkuasa tinggi disebabkan kapasiti pengecasannya yang tinggi. Kajian ini membentangkan superkapasitor MEMS dengan lapisan nano grafin tumbuh di atas elektrod. Superkapasitor MEMS terdiri daripada silikon dioksida (SiO2), nikel, grafin, polipirol (Ppy) dan lapisan alkohol polivinil (PVA). Tumpuan diberikan kepada fabrikasi struktur lapisan nano grafin atas elektrod superkapasitor MEMS melalui beberapa proses seperti pemendapan wap kimia secara peningkatan plasma (PECVD), penyejatan alur e dan salutan pusing. Grafin tumbuh melalui proses PECVD selama 10 minit pada kuasa 40 Watt dan pada suhu antara 400°C dan 1000°C. Spektrum Raman menunjukkan puncak pada 1340 dan 1580 cm-1 mewakili jalur D dan G. Puncak 2D wujud dalam julat 2600 - 3000 cm-1. Nisbah bagi keamatan puncak 2D terhadap puncak G pada 1000°C adalah 0.43 menunjukkan kualiti yang baik bagi banyak lapisan grafin.

 

Kata kunci: Bioperubatan implan; elektrod antara digit; grafin tumbuh; pemendapan wap kimia secara peningkatan plasma(PECVD); superkapasitor MEMS

 

ABSTRACT

MEMS supercapacitor, specifically with interdigital (IDE) electrodes design, has recently gained much interest in fields such as bioMEMS, biomedical implants, power electronic devices and high power applications due to its high charging capacity. This research presents a MEMS supercapacitor with graphene nanolayers grown on its electrodes. The MEMS supercapacitor consists of silicon dioxide (SiO2), nickel, graphene, polypyrrole (Ppy) and polyvinyl alcohol (PVA) layers. This paper more focus on the fabrication of graphene nanolayer structures on MEMS supercapacitor electrodes via several subsequent plasma-enhanced chemical vapor deposition (PECVD), E-beam evaporation and spin coating processes. PECVD graphene was grown for 10 min at 40 Watt at temperatures between 400°C and 1000°C. Raman spectrum indicates peaks at 1340 and 1580 cm-1 corresponding to D and G band, respectively. The 2D peaks appear in range of 2600 to 3000 cm-1. The intensity ratio of 2D and G peaks at 1000°C is 0.43, which indicates a good quality of multilayer graphene.

 

Keywords: Biomedical implants; graphene grown; interdigital electrode (IDE); MEMS supercapacitor; plasma-enhanced chemical vapor deposition (PECVD)

REFERENCES

Aziz, N.A., Bais, B., Hamzah, A.A. & Majlis, B.Y. 2008. Characterization of HNA etchant for silicon microneedles array fabrication. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE pp. 203-206.

Chen, J., Bo, Z. & Lu, G. 2015. Vertically-Oriented Graphene: PECVD Synthesis and Applications. Switzerland: Springer International Publishing.

Hamzah, A.A., Zainal Abidin, H.E., Yeop Majlis, B., Mohd Nor, M., Ismardi, A., Sugandi, G., Tiong, T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration. Journal of Micromechanics and Microengineering23(7): 74007. DOI: 10.1088/0960- 1317/23/7/074007.

Hamzah, A.A., Majlis, Y. & Ahmad, I. 2007. HF etching of sacrificial spin-on glass in straight and junctioned microchannels for MEMS microstructure release. J. Electrochem. Soc. 154(8): D376-D382.

Hamzah, A.A., Majlis, B.Y. & Ahmad, I. 2004. Deflection analysis of epitaxially deposited polysilicon encapsulation for MEMS devices. IEEE International Conference on Semiconductor Electronics. pp. 611-614. DOI: 10.1109/ SMELEC.2004.1620960.

Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S., Chia, C.H., Hamid, M.A.A. & Shamsudin, R. 2014. Nano Fe3 O4 -activated carbon composites for aqueous supercapacitors. Sains Malaysiana43(6): 885-894.

Lin, Z., Ye, X., Han, J., Chen, Q., Fan, P., Zhang, H., Xie, D., Zhu, H. & Zhong, M. 2015. Precise control of the number of layers of graphene by picosecond laser thinning. Scientific Reports 5: 11662.

Marsi, N., Majlis, B.Y., Hamzah, A.A. & Mohd-Yasin, F. 2015. Development of high temperature resistant of 500°C employing silicon carbide (3C-SiC) based MEMS pressure sensor. Microsystem Technologies 21(2): 319-330.

Marsi, N., Majlis, B.Y., Hamzah, A.A. & Mohd-Yasin, F. 2012. Comparison of mechanical deflection and maximum stress of 3C SiC- and si-based pressure sensor diaphragms for extreme environment. 2012 10th IEEE International Conference on Semiconductor Electronics, ICSE 2012 - Proceedings. pp. 186-190.

Moon, K., Li, Z., Yao, Y., Lin, Z., Liang, Q., Agar, J., Song, M., Liu, M. & Wong, C.P. 2010. Graphene for ultracapacitors. Proceedings - Electronic Components and Technology Conference. pp. 1323-1328.

Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. & Kim, K. 2012. A roadmap for graphene. Nature 490(7419): 192-200.

Terasawa, T.O. & Saiki, K. 2012. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50(3): 869-874.

Wang, Y.Y., Ni, Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W. & Wee, A.T.S. 2008. Raman studies of monolayer graphene: The substrate effect. Journal of Physical Chemistry C 112(29): 10637-10640.

Zainal Abidin, H.E., Hamzah, A.A., Majlis, B.Y., Yunas, J., Abdul Hamid, N. & Abidin, U. 2013. Electrical characteristics of double stacked Ppy-PVA supercapacitor for powering biomedical MEMS devices. Microelectronic Engineering 111: 374-378.

Zheng, B., Yang, Y., Chen, J., Yu, K., Yan, J. & Cen, K. 2013. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5(12): 5180-5204.

Zheng, B., Wen, Z., Kim, H., Lu, G., Yu, K. & Chen, J. 2012. One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12): 4379- 4387.

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22(35): 3906-3924.

 

 

*Corresponding author; email: azlanhamzah@ukm.edu.my

 

 

 

 

 

previous