Sains Malaysiana 46(7)(2017): 1061–1067
http://dx.doi.org/10.17576/jsm-2017-4607-07
Pencirian Pertumbuhan Lapisan Nano Grafin di atas Elektrod antara Digit Superkapasitor MEMS
(Characterization of Graphene Nanolayers Grown on
MEMS Interdigital Supercapacitor Electrode)
HAFZALIZA ERNY ZAINAL ABIDIN, AZRUL AZLAN HAMZAH*
& BURHANUDDIN
YEOP MAJLIS
Institute of Microengineering and Nanoelectronics (IMEN). Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 23 December 2016/Accepted:
17 February 2017
ABSTRAK
Superkapasitor MEMS khususnya dengan reka bentuk
elektrod antara
digit (IDE),
telah menarik
minat pada masa kini dalam bidang
seperti bioMEMS,
bioperubatan implan,
peranti kuasa elektronik
dan aplikasi
berkuasa tinggi disebabkan kapasiti pengecasannya yang tinggi. Kajian ini membentangkan superkapasitor MEMS dengan
lapisan nano
grafin tumbuh di atas elektrod. Superkapasitor
MEMS
terdiri daripada
silikon dioksida
(SiO2),
nikel, grafin,
polipirol (Ppy) dan lapisan alkohol
polivinil (PVA). Tumpuan diberikan kepada fabrikasi struktur lapisan nano grafin atas
elektrod superkapasitor
MEMS
melalui beberapa
proses seperti pemendapan wap kimia
secara peningkatan plasma (PECVD), penyejatan alur e dan salutan
pusing. Grafin tumbuh melalui proses PECVD
selama 10 minit
pada kuasa
40 Watt dan pada suhu
antara 400°C dan
1000°C. Spektrum Raman menunjukkan puncak pada 1340 dan 1580 cm-1 mewakili jalur D dan G. Puncak 2D wujud dalam julat
2600 - 3000 cm-1. Nisbah
bagi keamatan
puncak 2D terhadap puncak G pada 1000°C adalah 0.43 menunjukkan kualiti yang baik bagi banyak lapisan
grafin.
Kata kunci:
Bioperubatan implan;
elektrod antara digit; grafin tumbuh; pemendapan
wap kimia secara peningkatan plasma(PECVD); superkapasitor
MEMS
ABSTRACT
MEMS supercapacitor,
specifically with interdigital (IDE) electrodes design, has
recently gained much interest in fields such as bioMEMS,
biomedical implants, power electronic devices and high power applications due
to its high charging capacity. This research presents a MEMS supercapacitor
with graphene nanolayers grown on its electrodes. The MEMS supercapacitor consists of silicon dioxide (SiO2),
nickel, graphene, polypyrrole (Ppy)
and polyvinyl alcohol (PVA) layers. This paper more focus on
the fabrication of graphene nanolayer structures on MEMS supercapacitor electrodes via several subsequent plasma-enhanced
chemical vapor deposition (PECVD), E-beam evaporation and spin
coating processes. PECVD graphene was grown for 10 min at
40 Watt at temperatures between 400°C and 1000°C. Raman spectrum indicates
peaks at 1340 and 1580 cm-1 corresponding
to D and G band, respectively. The 2D peaks appear in range of 2600 to 3000 cm-1.
The intensity ratio of 2D and G peaks at 1000°C is 0.43, which indicates a good
quality of multilayer graphene.
Keywords: Biomedical implants; graphene grown; interdigital
electrode (IDE); MEMS supercapacitor; plasma-enhanced chemical vapor deposition (PECVD)
REFERENCES
Aziz, N.A., Bais, B., Hamzah, A.A. & Majlis, B.Y.
2008. Characterization of HNA etchant for silicon
microneedles array fabrication. IEEE
International Conference on Semiconductor Electronics, Proceedings,
ICSE pp. 203-206.
Chen, J., Bo, Z. & Lu, G. 2015. Vertically-Oriented
Graphene: PECVD Synthesis and Applications. Switzerland: Springer
International Publishing.
Hamzah,
A.A., Zainal Abidin, H.E., Yeop Majlis, B., Mohd Nor, M., Ismardi,
A., Sugandi, G., Tiong,
T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration. Journal
of Micromechanics and Microengineering23(7):
74007. DOI: 10.1088/0960- 1317/23/7/074007.
Hamzah, A.A.,
Majlis, Y. & Ahmad, I. 2007. HF etching of sacrificial spin-on glass in straight and junctioned microchannels for
MEMS microstructure release. J. Electrochem.
Soc. 154(8): D376-D382.
Hamzah, A.A.,
Majlis, B.Y. & Ahmad, I. 2004. Deflection analysis of epitaxially deposited
polysilicon encapsulation for MEMS devices. IEEE
International Conference on Semiconductor Electronics.
pp. 611-614. DOI: 10.1109/ SMELEC.2004.1620960.
Ho,
M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S.,
Chia, C.H., Hamid, M.A.A. & Shamsudin, R. 2014. Nano Fe3 O4 -activated carbon composites for
aqueous supercapacitors. Sains Malaysiana43(6): 885-894.
Lin, Z., Ye, X., Han, J., Chen, Q., Fan, P., Zhang, H., Xie, D., Zhu, H. & Zhong, M.
2015. Precise control of the number of layers of graphene by picosecond
laser thinning. Scientific Reports 5: 11662.
Marsi, N., Majlis, B.Y., Hamzah, A.A. &
Mohd-Yasin, F. 2015. Development of high temperature
resistant of 500°C employing silicon carbide (3C-SiC) based
MEMS pressure sensor. Microsystem Technologies 21(2):
319-330.
Marsi,
N., Majlis, B.Y., Hamzah,
A.A. & Mohd-Yasin, F. 2012. Comparison
of mechanical deflection and maximum stress of 3C SiC-
and si-based pressure sensor diaphragms
for extreme environment. 2012
10th IEEE International Conference on Semiconductor Electronics,
ICSE 2012 - Proceedings. pp. 186-190.
Moon, K., Li,
Z., Yao, Y., Lin, Z., Liang, Q., Agar, J., Song, M., Liu, M.
& Wong, C.P. 2010.
Graphene for ultracapacitors.
Proceedings - Electronic Components and Technology Conference.
pp. 1323-1328.
Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert,
P.R., Schwab, M.G. & Kim, K. 2012. A roadmap for graphene. Nature 490(7419): 192-200.
Terasawa, T.O. &
Saiki, K. 2012. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50(3): 869-874.
Wang, Y.Y., Ni,
Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W. & Wee, A.T.S.
2008. Raman
studies of monolayer graphene: The substrate effect. Journal of Physical
Chemistry C 112(29): 10637-10640.
Zainal Abidin, H.E., Hamzah, A.A., Majlis, B.Y., Yunas, J., Abdul
Hamid, N. & Abidin, U. 2013. Electrical characteristics of
double stacked Ppy-PVA supercapacitor for powering
biomedical MEMS devices. Microelectronic Engineering 111: 374-378.
Zheng, B.,
Yang, Y., Chen, J., Yu, K., Yan, J. & Cen, K. 2013. Plasma-enhanced
chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5(12): 5180-5204.
Zheng, B., Wen,
Z., Kim, H., Lu, G., Yu, K. & Chen, J. 2012. One-step
fabrication and capacitive behavior of electrochemical double layer capacitor
electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12): 4379- 4387.
Zhu, Y., Murali,
S., Cai, W., Li, X., Suk,
J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene
and graphene oxide: Synthesis, properties, and applications. Advanced
Materials 22(35): 3906-3924.
*Corresponding author;
email: azlanhamzah@ukm.edu.my