Sains Malaysiana 46(7)(2017): 1075–1082

http://dx.doi.org/10.17576/jsm-2017-4607-09

 

Electrophoretic Deposition of Carbon Nanotubes on Heat Spreader for Fabrication of Thermal Interface Materials (TIM)

(Pengendapan Elektroforesis Karbon Tiub Nano ke atas Penyebar Hab untuk Fabrikasi Bahan Antara Dua Muka Haba (TIM))

 

RAIHANA BAHRU1, ABDUL RAHMAN MOHAMED1*, WEI-MING YEOH2 & KHATIJAH AISHA YAACOB3

 

1School of Chemical Engineering, Universiti Sains Malaysia, 11800 USM Nibong Tebal,

Pulau Pinang, Malaysia

 

2Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Darul Ridzuan, Malaysia

 

3School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 11800 USM Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 23 December 2016/Accepted: 27 February 2017

 

ABSTRACT

Thermal interface materials (TIMs) are applied in packaging of electronic devices for heat dissipation purposes. Carbon nanotubes (CNTs) are promising material due to their high thermal conductivity properties which will give optimum performance as TIMs. In this research study, electrophoretic deposition (EPD) is used which enables the deposition process conduct at room temperature with simple equipment setup which beneficial for CNTs deposition. As-produced CNTs was purified and directly deposited on heat spreader using direct current (DC) electricity. Dimethylformamide (DMF) was used as suspension medium for CNTs and the effect of suspension concentration was studied. From the screening of suspension concentration, 0.50 mg/mL yielded good deposition with thickness of 4.78 μm of CNTs deposited on heat spreader at applied voltage of 150V and 10 min deposition time. Further studied in different applied voltage and voltage of 250 V shows the maximum thickness of 15.01 μm with 2.0 mg weight of deposited CNTs which is suitable for fabrication of TIM.

 

Keywords: Carbon nanotubes; electrophoretic deposition; thermal interface materials

 

ABSTRAK

Bahan antara dua muka haba diaplikasikan dalam pakej alatan elektronik untuk tujuan pelesapan haba. Karbon tiub nano (CNT) dipilih kerana ia mempunyai konduktiviti haba baik yang dapat memberi prestasi optimum sebagai bahan antara dua muka haba. Di dalam kajian ini, pengendapan elektroforesis (PE) adalah digunakan bagi membolehkan proses pengendapan dilakukan pada suhu bilik berserta pemasangan alatan yang ringkas iaitu bermanfaat dalam pengendapan NK. NK yang telah dihasilkan kemudiannya ditulenkan dan diendapkan terus di atas penyebar haba menggunakan elektrik arus terus (AT). Dimetilformamida (DMF) digunakan sebagai medium ampaian untuk NK dan kesan kepekatan ampaian telah dikaji. Kepekatan ampaian, 0.50 mg/mL menghasilkan endapan NK yang baik dengan ketebalan 4.78 μm di atas penyebar haba pada voltan gunaan 150V dan 10 min masa endapan. Kajian diteruskan bagi voltan gunaan yang berbeza dan menunjukkan voltan gunaan 250V menghasilkan tebal maksimum 15.01 μm dengan 2.0 mg berat endapan NK yang sesuai untuk fabrikasi bahan antara dua muka haba.

 

Kata kunci: Bahan antara dua muka haba; nanotiub karbon; pengendapan elektroforesis

REFERENCES

Bergman, T.L., Incropera, F.P. & Lavine, A.S. 2011. Fundamentals of Heat and Mass Transfer. New York: John Wiley & Sons.

Besra, L. & Liu, M. 2007. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52: 1-61.

Boccaccini, A.R. & Zhitomirsky, I. 2002. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Current Opinion in Solid State and Materials Science 6: 251-260.

Boccaccini, A.R., Cho, J., Subhani, T., Kaya, C. & Kaya, F. 2010. Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. Journal of the European Ceramic Society 30(5): 1115-1129.

Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Minay, E.J. & Shaffer, M.S.P. 2006. Electrophoretic deposition of carbon nanotubes. Carbon 44: 3149-3160.

Corni, I., Nico, N., Saša, N., Katja, K., Paolo, V., Qizhi, C., Mary, P.R. & Boccaccini, A.R. 2009. Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel. Surface and Coatings Technology 203(10-11): 1349-1359.

Corni, I., Mary, P.R. & Boccaccini, A.R. 2008. Electrophoretic deposition: From traditional ceramics to nanotechnology. Journal of the European Ceramic Society 28(7): 1353-1367.

Cott, D.J., Maarten, V., Olivier, R., Iuliana, R., Stefan, D.G., Sven, V.E. & Philippe, M.V. 2013. Synthesis of large area carbon nanosheets for energy storage applications. Carbon 58: 59-65.

Dickerson, J.H., & Boccacini, A.R. 2012. Electrophoretic Deposition of Nanomaterials. New York: Springer.

Fabris, D., Rosshirt, M., Cardenas, C., Wilhite, P., Yamada, T. & Yang, C.Y. 2011. Application of carbon nanotubes to thermal interface materials. Journal of Electronic Packaging 133(2): 020902-1-020902-6.

Ferrari, B. & Moreno, R. 2010. EPD kinetics: A review. Journal of the European Ceramic Society 30(5): 1069-1078.

Fu, Y., Nabi, N., Teng, W., Shun, W., Zhili, H., Björn, C., Yan, Z., Xiaojing, W. & Johan, L. 2012. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology 23(4): 045304.

Gwinn, J.P. & Webb, R.L. 2003. Performance and testing of thermal interface materials. Microelectronics Journal 34(3): 215-222.

Inam, F., Haixue, Y., Michael, J.R. & Ton, P. 2008. Dimethylformamide: An effective dispersant for making ceramic-carbon nanotube composites. Nanotechnology 19(19): 195710.

Mehrnoush, K., Chai, S.P. & Mohamed, A.R. 2015. The effects of process parameters on carbon dioxide reforming of methane over Co–Mo–MgO/MWCNTs nanocomposite catalysts. Fuel 158: 129-138.

Kim, D., Shin, D.S., Yu, J., Kim, H., Kim, J.H. & Woo, C.S. 2015. Thermal spreading in nanotube coating. Journal of Nanoscience and Nanotechnology 15: 8984-8988.

Kim, B.W., Chung, H., Min, B.K., Kim, H. & Kim, W. 2010. Electrochemical capacitors based on aligned carbon nanotubes directly synthesized on tantalum substrates. Bull. Korean Chem. Soc. 31: 3697-3702.

Kumar, M. & Ando, Y. 2010. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. and Nanotechnol. 10: 3739-3758.

Lee, C.Y., Huei, M.T., Huey, J.C., Seu, Y.L., Pang, L. & Tseung, Y.T. 2005. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. Journal of the Electrochemical Society 152(4): A716.

Llobet, E. 2013. Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical 179: 32-45.

McNamara, A.J., Yogendra, J. & Zhuomin, M.Z. 2012. Characterization of nanostructured thermal interface materials - A review. International Journal of Thermal Sciences 62: 2-11.

Mohamed, A.R., Bahru, R., Yeoh, W.M. & Yaacob, K.A. 2016. Dimethyl formamide as dispersing agent for electrophoretically deposited of multi-walled carbon nanotubes. International Journal of Petrochemical Science and Engineering 1(1): 1-4.

Peacock, M.A., Roy, C.K., Hamilton, M.C., Johnson, R.W., Knight, R.W. & Harris, D.K. 2016. Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials. International Journal of Heat and Mass Transfer 97: 94-100.

Prasher, R. 2006. Thermal interface materials: Historical perspective, status and future directions. Proceeding of the IEEE 94(8): 1571-1586.

Riddick, T.M. 1968. Control of Colloid Stability through Zeta Potential and its Relationship to Cardiovascular Disease. New York: Livingston Publishing.

Sarkar, A. 2013. Electrophoretic deposition of carbon nanotubes on silicon substrate. Doctoral Thesis. Louisiana, Louisiana State Uni. p. 138 (Unpublished).

Sarkar, P. & Nicholson, P. 1996. Electrophoretic deposition (EPD) - Mechanisms, kinetics and applications to ceramics. J. Am. Ceram. Soc. 79: 1987-2002.

Song, L., Guan, Y., Du, P., Yang, Y., Ko, F. & Xiong, J. 2016. Enhanced efficiency in flexible dye-sensitized solar cells by a novel bilayer photoanode made of carbon nanotubes incorporated TiO2 nanorods and branched TiO2 nanotubes. Sol. Energy Mater. Sol. Cells 147: 134-143.

Su, Y. & Zhitomirsky, I. 2013. Electrophoretic deposition of graphene, carbon nanotubes and composite films using methyl violet dye as a dispersing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects 436(September): 97-103.

Tantra, R., Schulze, P. & Quincey, P. 2010. Effect of nanoparticle concentration on Zeta-potential measurement results and reproducibility. Particuology 8(3): 279-285.

Tong, T., Yang, Z., Lance, D., Ali, K., Meyappan, M. & Arun, M. 2007. Dense vertically aligned multiwalled carbon nanotubes arrays as thermal interface materials. IEEE Trans. Compon. Packag. Technol. 30(1): 92-100.

Van der Biest, O. & Vandeperre, L.J. 1999. Electrophoretic deposition of materials. Annual Review of Materials Science 29(1): 327-352.

Wang, W.X., Xiuzhen, L., Johan, L., Michael, O.O., Tomas, A. & Dongkai, S. 2006. New nano-thermal interface materials (nano-TIMs) with SiC nano-particles used for heat removal in electronics packaging applications. 2006 International Conference on Electronic Materials and Packaging, December. IEEE. pp. 1-5.

Xu, L., Cong, Y., Johan, L., Yan, Z., Xiu, Z.L. & Zhaonian, C. 2008. Nano-thermal interface material with CNT nano-particles for heat dissipation application. Proceedings, International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP. pp. 8-11.

Yeoh, W.M., Chai, S.P., Lee, K.T. & Mohamed, A.R. 2012. Production of carbon nanotubes from chemical vapor deposition of methane in a continuous rotary reactor system. Chemical Engineering Communications 199(5): 600-607.

 

 

*Corresponding author; email: chrahman@usm.my

 

 

 

previous