Sains Malaysiana 46(7)(2017): 1125–1139
http://dx.doi.org/10.17576/jsm-2017-4607-16
Graphene for Biomedical
Applications: A Review
(Grafin untuk Aplikasi Bioperubatan: Suatu Sorotan)
AZRUL AZLAN HAMZAH*, REENA SRI SELVARAJAN
& BURHANUDDIN YEOP MAJLIS
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 27 December 2016/Accepted:
13 February 2017
ABSTRACT
Since its discovery in 2004,
graphene has enticed engineers and researchers from various
fields to explore its possibilities to be incepted into
various devices and applications. Graphene is deemed a
‘super’ material by researchers due to its
extraordinary strength, extremely high surface-to-mass
ratio and superconducting properties. Nonetheless, graphene
has yet to find plausible footing as an electronics material.
In biomedical field, graphene has proved useful in tissue
engineering, drug delivery, cancer teraphy,
as a component in power unit for biomedical implants and
devices and as a vital component in biosensors. Graphene
is used as scaffolding for tissue regeneration in stem
cell tissue engineering, as active electrodes in supercapacitor
for powering wearable and implantable biomedical devices
and as detectors in biosensors. In tissue engineering,
the extreme strength of monolayer graphene enables it
to hold stem cell tissues as scaffold during in-vitro
cell regeneration process. In MEMS supercapacitor, graphene's
extremely high surface-to-mass ratio enables it to be
used as electrodes in order to increase the power unit's
energy and power densities. A small yet having high energy
and power densities cell is needed to power often space
constrainted biomedical devices. In FET biosensors,
graphene acts as detector electrodes, owing to its superconductivity
property. Graphene detector electrodes is capable of detecting
target molecules at a concentration level as low as 1
pM, making it the most sensitive
biosensor available today. Graphene continues to envisage
unique and exciting applications for biomedical field,
prompting continuous research which results and implementation
could benefit the general public in decades to come.
Keywords: Biomedical applications; FET biosensor; graphene; scaffolding; supercapacitor; tissue
engineering
ABSTRAK
Sejak penemuannya pada tahun 2004, grafin telah menarik minat
para jurutera dan
penyelidik daripada pelbagai bidang untuk mengkaji kebolehaplikasiannya di dalam
pelbagai peranti dan penggunaan. Grafin dianggap sebagai bahan super oleh penyelidik disebabkan kekuatannya yang
amat tinggi, nisbah
luas permukaan
kepada jisim yang sangat besar dan
sifat superkonduktornya.
Walau bagaimanapun, grafin masih belum
diakui sebagai
bahan elektronik. Di dalam bidang bioperubatan,
grafin telah
digunakan di dalam kejuruteraaan tisu, penyampaian ubat, rawatan kanser, sebagai komponen unit kuasa untuk implan
dan peranti
bioperubatan dan sebagai komponen penting di dalam pengesan bio. Grafin digunakan sebagai perancah untuk pembinaan semula tisu di dalam kejuruteraan
tisu sel
induk, sebagai elektrod aktif di dalam superkapasitor untuk menghidupkan peranti bioperubatan bolehpakai dan implan serta sebagai unsur pengesanan
di dalam pengesan bio. Di dalam bidang kejuruteraan tisu, kekuatan grafin selapis yang amat tinggi membolehkannya
memegang tisu-tisu
sel induk sebagai
perancah semasa
proses pertumbuhan semula sel secarain-vitro.
Di dalam superkapasitor
MEMS,
nisbah luas
permukaan kepada jisim grafin yang tinggi membolehkan penggunaannya sebagai elektrod untuk meningkatkan ketumpatan tenaga dan kuasa
unit tersebut. Sel
kuasa yang kecil tetapi mempunyai ketumpatan tenaga dan kuasa yang tinggi sering diperlukan
di dalam peranti
bioperubatan yang acapkali terbatas oleh saiz
yang kecil. Di dalam
pengesan bio FET, grafin
yang mempunyai sifat
konduktiviti super berfungsi
sebagai elektrod pengesan. Elektrod pengesan grafin boleh mengesan molekul sasaran dengan kepekatan serendah 1 pM, menjadikannya pengesan bio paling
sensitif pada
masa kini. Grafin terus
merealisasikan kegunaan
unik dan menarik
di dalam bidang
bioperubatan, yang seterusnya
menarik minat para penyelidik untuk terus menghasilkan penggunaan yang berguna untuk masyarakat pada masa akan datang.
Kata kunci: Aplikasi bioperubatan; grafin; kejuruteraan tisu; pengesan bio FET; sokongan; superkapasitor
REFERENCES
Abidin, H.E.Z., Hamzah, A.A., Mohamed, M.A., Majlis,
B.Y. & Marsi, N. 2015.
Electrical performances based on two different structured
of micro supercapacitor electrodes. IEEE Regional Symposium
on Micro and Nano Electronics (RSM) 4: 5-8. doi:10.1109/RSM.2015.7354977.
Abidin, H.E.Z., Hamzah, A.A. & Majlis, B.Y.
2011. Design of interdigital structured supercapacitor
for powering biomedical devices. 2011 IEEE Regional
Symposium on Micro and Nanoelectronics,
RSM 2011 - Programme and Abstracts.
pp. 88-91. doi:10.1109/RSM.2011.6088298.
Adzhri, R., Md Arshad,
M.K., Gopinath, S.C.B., Ruslinda,
A.R., Fathil, M.F.M., Ayub,
R.M., M. Nuhaizan, Mohd Nor
& Voon, C.H. 2016. High-performance
integrated field-effect transistor-based sensors. Analytica Chimica
Acta917: 1-18. doi:10.1016/j.aca.2016.02.042.
Ahadian, S., Obregón, R., Ramón-Azcón, J.,
Salazar, G., Shiku, H., Ramalingam,
M. & Matsue, T. 2016. Carbon nanotubes and graphene-based nanomaterials for
stem cell differentiation and tissue regeneration. Journal of Nanoscience
and Nanotechnology 16(9): 8862-8880. doi:10.1166/jnn.2016.12729.
Akhavan, O. 2016.
Graphene scaffolds in progressive nanotechnology/stem cell-based tissue
engineering of nervous systems. J. Mater. Chem. B 4: 3169-3190.
doi:10.1039/C6TB00152A.
Akhavan, O., Ghaderi, E., Abouei, E., Hatamie, S. & Ghasemi, E.
2014. Accelerated differentiation of neural stem cells into neurons on
ginseng-reduced graphene oxide sheets. Carbon 66: 395-406.
doi:10.1016/j.carbon.2013.09.015.
Ali, U., Karim,
K.J.B.A. & Buang, N.A. 2015. A review of the
properties and applications of poly(methyl methacrylate) (PMMA). Polymer
Reviews 55(10): 678-705. doi:10.1080/ 15583724.2015.1031377.
Amine, A., Mohammadi, H., Bourais, I. & Palleschi, G. 2006. Enzyme inhibition-based biosensors for
food safety and environmental monitoring. Biosensors and Bioelectronics 21(8):
1405-1423. doi:10.1016/j.bios.2005.07.012.
Bae, S., Kim,
H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan,
J., Lei, T., Kim, H.R., Song, Young II, Kim, Y-K., Kim, K.S., Özyilmaz, B., Ahn, J-H., Hong,
B.H. & Iijima, S. 2010. Roll-to-roll production
of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5(8):
574-578. doi:10.1038/nnano.2010.132.
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov,
K.S. & Geim, A.K. 2009. The electronic properties
of graphene. Reviews of Modern Physics 81(1): 109-162. doi:10.1103/
RevModPhys.81.109.
Chaudhary, R.,
Sharma, A., Sinha, S., Yadav, J., Sharma, R., Mukhiya,
R. & Khanna, V.K. 2016. Fabrication and characterisation of Al gate n-metal-oxide-semiconductor field-effect transistor, on-chip
fabricated with silicon nitride ion-sensitive field-effect transistor. IET
Computers and Digital Techniques 10(5): 268-272.
doi:10.1049/iet-cdt.2015.0174.
Chen, T-Y.,
Loan, P.T.K., Hsu, C-L., Lee, Y-H., Wang, J. T-W., Wei, K-H., Lin, C-T. &
Li, L.J. 2013. Label-free detection of DNA hybridization using transistors
based on CVD grown graphene. Biosensors & Bioelectronics 41:
103-109. doi:10.1016/j.bios.2012.07.059.
Cheng, Q., Tang,
J., Ma, J., Zhang, H., Shinya, N. & Qin, L.C. 2011. Graphene and carbon
nanotube composite electrodes for supercapacitors with ultra-high energy
density. Physical Chemistry Chemical Physics 13(39): 17615-17624.
doi:10.1039/c1cp21910c.
Choi, W., Lahiri, I., Seelaboyina, R. & Kan, Y.S. 2010. Synthesis of graphene and its
applications: A review. Critical Reviews in Solid State and Materials
Sciences 35(1): 52-71. doi:10.1080/10408430903505036.
Craciun, M.F., Russo,
S., Yamamoto, M. & Tarucha, S. 2011. Tuneable electronic properties in graphene. Nano Today 6(1):
42-60. doi:10.1016/j.nantod.2010.12.001.
Cui, Y. 2013.
Nanowire nanosensors for highly sensitive and
selective detection of biological and chemical species. Science 293(5533):
1289-1292. doi:10.1126/science.1062711.
Dong, X., Shi, Y.,
Huang, W., Chen, P. & Li, L.J. 2010. Electrical detection of DNA
hybridization with single-base specificity using transistors based on CVD-grown
graphene sheets. Advanced Materials 22(14): 1649-1653. doi:10.1002/
adma.200903645.
Dreyer, D.R., Ruoff, R.S. & Bielawski, C.W.
2010. From conception to realization: An historial account of graphene and some perspectives for its future. Angewandte Chemie - International Edition 49(49): 9336-9344.
doi:10.1002/ anie.201003024.
Dubal, D.P., Ayyad, O., Ruiz, V. & Gómez-Romero, P. 2015. Hybrid
energy storage: The merging of battery and supercapacitor chemistries. Chem.
Soc. Rev. 44(7): 1777- 1790. doi:10.1039/C4CS00266K.
Feng, L., Chen,
Y., Ren, J. & Qu, X. 2011. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer
cells. Biomaterials 32(11): 2930-2937.
doi:10.1016/j.biomaterials.2011.01.002.
Fiori, G. & Iannaccone, G. 2009. Ultralow-voltage bilayer graphene
tunnel FET. IEEE Electron Device Letters 30(10): 1096-1098.
doi:10.1109/LED.2009.2028248.
Gao, D., Li, M.,
Li, H., Li, C., Zhu, N. & Yang, B. 2016. Sensitive detection of
biomolecules and DNA bases based on graphene nanosheets. Journal of Solid State Electrochemistry 21(3): 813-821. doi:10.1007/s10008-016-3423-0.
Ge, C., Li, H.,
Li, M., Li, C., Wu, X. & Yang, B. 2015. Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous
sensing of dihydroxybenzene isomers. Carbon 95:
1-9. doi:10.1016/j.carbon.2015.08.006.
Innova Research. 2015.
Overcapacity will soon reshape graphene industry landscape.
https://www.newswire.com/
news/overcapacity-will-soon-reshape-graphene-production-landscape. Accessed on
February 6, 2017.
Novoselov, K.S., Jiang,
Z., Zhang, Y., Morozov, S.V., Stormer,
H.L., Zeitler, U., Maan,
J.C., Boebinger, G.S., Kim, P. & Geim, A.K. 2007. Room temperature quantum hall effect in
graphene. Science 315(5817): 1379. DOI: 10.1126/ science.1137201.
Goenka, S., Sant,
V. & Sant, S. 2014. Graphene-based nanomaterials
for drug delivery and tissue engineering. Journal of Controlled Release 173(1):
75-88. doi:10.1016/j. jconrel.2013.10.017.
González, Z., Vizireanu, S., Dinescu, G., Blanco, C. & Santamaría,
R. 2012. Carbon nanowalls thin films as
nanostructured electrode materials in vanadium redox flow batteries. Nano
Energy 1(6): 833-839. doi:10.1016/j.nanoen.2012.07.003.
Guo, S.R., Lin, J., Penchev, M., Yengel, E., Ghazinejad, M., Ozkan, C.S. & Ozkan, M. 2011. Label free DNA detection using large
area graphene based field effect transistor biosensors. Journal of
Nanoscience and Nanotechnology 11(6): 5258-5263. doi:10.1166/jnn.2011.3885.
Hass, J., de Heer, W.A. & Conrad, E.H. 2008. The growth and
morphology of epitaxial multilayer graphene. Journal of Physics: Condensed
Matter 20(32): 323202. doi:10.1088/0953-8984/20/32/323202.
Hassan, S.,
Suzuki, M., Mori, S. & El-Moneim, A.A. 2014.
MnO2/ carbon nanowalls composite electrode for
supercapacitor application. Journal of Power Sources 249(January):
21-27. doi:10.1016/j.jpowsour.2013.10.097.
Huang, Y., Dong,
X., Shi, Y., Li, C.M., Li, L.J. & Chen, P. 2010. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2(8): 1485-1488.
doi:10.1039/c0nr00142b.
Hwang, J., Yoon,
T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H. &
Jeon, S. 2013. Enhanced mechanical properties of graphene/copper nanocomposites
using a molecular-level mixing process. Advanced Materials 25(46):
6724-6729. doi:10.1002/adma.201302495.
Kang, S.J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M.A., Rotkin, S.V. & Rogers, J.A. 2007. High-performance
electronics using dense, perfectly aligned arrays of single-walled carbon
nanotubes. Nature Nanotechnology 2(4): 230-236.
doi:10.1038/nnano.2007.77.
Kedzierski, J. 2008.
Epitaxial graphene transistors on SiC substrates. IEEE
Trans. Electron Devices, 55(8): 2078-2085.
http://dx.doi.org/10.1109/TED.2008.926593.
Kim, J.P., Lee,
B.Y., Lee, J., Hong, S. & Sim, S.J. 2009. Enhancement of sensitivity and
specificity by surface modification of carbon nanotubes in diagnosis of
prostate cancer based on carbon nanotube field effect transistors. Biosensors
and Bioelectronics 24(11): 3372-3378. doi:10.1016/j.bios.2009.04.048.
Lee, S.K., Kim,
H. & Shim, B.S. 2013. Graphene: An emerging material for biological tissue
engineering. Carbon Letters 14(2): 63-75. doi:10.5714/CL.2013.14.2.063.
Lemme, M.C., Member,
S., Echtermeyer, T.J., Baus,
M. & Kurz, H. 2007. A graphene field-effect
device. IEEE Electron Device Letters 28(4): 282-284.
Li, N., Zhang,
Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M. &
Cheng, G. 2013. Three-dimensional graphene foam as a biocompatible and
conductive scaffold for neural stem cells. Scientific Reports 3: 1604.
doi:10.1038/ srep01604.
Li, X. &
Wei, B. 2013. Supercapacitors based on nanostructured carbon. Nano Energy 2(2):
159-173. doi:10.1016/j. nanoen.2012.09.008.
Liu, C., Yu, Z.,
Neff, D., Zhamu, A. & Jang, B.Z. 2010a.
Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters 10(12): 4863-4868. doi:10.1021/ nl102661q.
Liu, C., Yu, Z.,
Neff, D., Zhamu, A. & Jang, B.Z. 2010b.
Graphene-based supercapacitor with an ultrahigh energy density - SI. Nano
Letters 10(12): 4863-4868. doi:10.1021/ nl102661q.
Liu, S. & Guo, X. 2012. Carbon nanomaterials field-effect-transistor-based
biosensors. NPG Asia Materials 4(8): e23. doi:10.1038/am.2012.42.
Lu, M., Lee, D., Xue, W. & Cui, T. 2009. Flexible and disposable immunosensors based on layer-by-layer self-assembled carbon
nanotubes and biomolecules. Sensors and Actuators A: Physical 150(2):
280-285. doi:10.1016/j.sna.2008.12.021.
Lund, A.W., Yener, B., Stegemann, J.P. & Plopper, G.E. 2009. The natural and engineered 3D
microenvironment as a regulatory cue during stem cell fate determination. Tissue
Engineering. Part B, Reviews 15(3): 371-380. doi:10.1089/
ten.teb.2009.0270.
Maehashi, K., Katsura, T., Kerman, K., Takamura,
Y., Matsumoto, K. & Tamiya, E. 2007. Label-free protein biosensor based on
aptamer-modified carbon nanotube field-effect transistors. Analytical
Chemistry 79(2): 782-787. doi:10.1021/ ac060830g.
Mannoor, M.S., Tao, H.,
Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G. & McAlpine,
M.C. 2014. Graphene-based wireless bacteria detection on tooth enamel. Nature
Mater. XXXIII(2): 81-87. doi:10.1007/ s13398-014-0173-7.2.
Mao, S., Yu, K.,
Chang, J., Steeber, D.A., Ocola,
L.E. & Chen, J. 2013. Direct growth of vertically-oriented graphene for
field-effect transistor biosensor. Scientific Reports 3: 1696.
doi:10.1038/srep01696.
Mao, S., Yu, K.,
Lu, G. & Chen, J. 2011. Highly sensitive protein sensor based on
thermally-reduced graphene oxide field-effect transistor. Nano Research 4(10):
921-930. doi:10.1007/ s12274-011-0148-3.
Nguyen, T., Pei,
R., Landry, D.W., Stojanovic, M.N. & Lin, Q.
2011. Microfluidic aptameric affinity sensing of vasopressin for clinical
diagnostic and therapeutic applications. Sensors and Actuators B: Chemical 154(1):
59-66. doi:10.1016/j. snb.2009.10.032.
Ohno, Y., Maehashi,
K. & Matsumoto, K. 2010. Label-free biosensors based on aptamer-modified
graphene field-effect transistors. Journal of the American Chemical Society 132(51):
18012-18013. doi:10.1021/ja108127r.
Ohno, Y., Maehashi,
K., Yamashiro, Y. & Matsumoto, K. 2009. Electrolyte-gated graphene
field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9(9): 3318-3322.
Park, S.Y.,
Park, J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H. & Hong, S. 2011.
Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced
Materials 23(36): 263-267. doi:10.1002/adma.201101503.
Pei, S. &
Cheng, H.M. 2012. The reduction of graphene oxide. Carbon 50(9):
3210-3228. doi:10.1016/j.carbon.2011.11.010.
Peng, Z., Lin,
J., Ye, R., Samuel, E.L.G. & Tour, J.M. 2015. Flexible and stackable
laser-induced graphene supercapacitors. ACS Applied Materials and Interfaces 7(5): 3414-3419. doi:10.1021/am509065d.
Peres, N.M.R.
2009. The electronic properties of graphene and its bilayer. Vacuum 83(10):
1248-1252. doi:10.1016/j. vacuum.2009.03.018.
Ping, J., Vishnubhotla, R., Vrudhula, A.
& Johnson, A.T.C. 2016. Scalable production of high sensitivity, label-free
DNA biosensors based on back-gated graphene field effect transistors. ACS
Nano acsnano.6b04110. doi:10.1021/ acsnano.6b04110.
Ping,
J., Zhou, Y., Wu, Y., Papper, V., Boujday,
S., Marks, R.S. & Steele, T.W.J. 2015. Recent advances in aptasensors based on graphene and graphene-like
nanomaterials. Biosensors and Bioelectronics 64: 373-385.
doi:10.1016/j.bios.2014.08.090.
Rakheja, S. & Sengupta,
P. 2016. Gate-voltage tunability of plasmons in single-layer graphene structures - Analytical
description, impact of interface states, and concepts for terahertz devices. IEEE
Transactions on Nanotechnology 15(1): 113-121. doi:10.1109/TNANO.2015.2507142.
Ren, W. & Cheng, H. 2014. The
global growth of graphene. Nature Nanotechnology 9: 726-730.
doi:10.1038/nnano.2014.229.
Iro, Z.S., Subramani,
C. & Dash, S.S. 2016. A brief review on electrode materials for
supercapacitor. International Journal of Electrochemical Science 11:
10628-10643. doi:10.20964/2016.12.50.
Simon, P. & Gogotsi, Y. 2008. Materials for electrochemical capacitors. Nature Materials 7(11): 845-854. doi:10.1038/ nmat2297.
Sordan, R., Traversi,
F. & Russo, V. 2009. Logic gates with a single graphene transistor. Applied
Physics Letters 94: 073305. doi:10.1063/1.3079663.
Star, A., Tu,
E., Niemann, J., Gabriel, J.C.P., Joiner, C.S. & Valcke, C. 2006. Label-free detection of DNA hybridization
using carbon nanotube network field-effect transistors. Proceedings of the
National Academy of Sciences 103(4): 921-926. doi:10.1073/pnas.0504146103.
Tan, Y.B. & Lee, J.M. 2013.
Graphene for supercapacitor applications. Journal of Materials Chemistry A 1(47):
14814- 14843. doi:10.1039/c3ta12193c.
Taychatanapat, T., Watanabe, K., Taniguchi, T.
& Jarillo-Herrero, P. 2011. Quantum hall effect
and Landau level crossing of Dirac fermions in trilayer graphene. Nature Physics 7(8): 621-625. doi:10.1038/nphys2008.
Tran, T.T. & Mulchandani, A. 2016. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. Trends in
Analytical Chemistry 79: 222-232. doi:10.1016/j. trac.2015.12.002.
Urmann, K., Modrejewski, J. &
Scheper, T. 2017. Aptamer-modified nanomaterials: Principles
and applications. BioNanoMat 18(1-2): 20160012.
doi:10.1515/bnm-2016-0012.
Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Cumhur Tekin, H., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D. & Renugoplakrishnan,
V. 2015. Graphene-protein field effect biosensors: Glucose sensing. Materials
Today 18(9): 513-522. doi:10.1016/j.mattod.2015.04.003.
Wang, C., Kim, J., Zhu, Y., Yang,
J., Lee, G.H., Lee, S., Yu, J., Pei, R., Liu, G., Nuckolls, C. Hone, J. &
Lin, Q. 2015. An aptameric graphene nanosensor for
label-free detection of small-molecule biomarkers. Biosensors and
Bioelectronics 71: 222-229. doi:10.1016/j.bios.2015.04.025.
Wang, J., Ding, B., Hao, X., Xu, Y., Wang, Y., Shen, L., Dou, H. & Zhang,
X. 2016. A modified molten-salt method to prepare graphene electrode with high
capacitance and low self-discharge rate. Carbon 102: 255-261.
doi:10.1016/j. carbon.2016.02.047.
Wang, Y., Wang, Y., Chen, J., Guo, H., Liang, K., Marcus, K., Peng, Q.L., Zhang, J. &
Feng, Z.S. 2016. A facile process combined with inkjet printing, surface
modification and electroless deposition to fabricate
adhesion-enhanced copper patterns on flexible polymer substrates for functional
flexible electronics. Electrochimica Acta218: 24-31. doi:10.1016/j. electacta.2016.08.143.
Xu, G., Abbott, J., Qin, L.,
Yeung, K.Y.M., Song, Y., Yoon, H., Kong, J. & Ham, D. 2014. Electrophoretic
and field-effect graphene for all-electrical DNA array technology. Nature
Communications 5: 4866. doi:10.1038/ncomms5866.
Yan, F., Zhang, M. & Li, J.
2014. Solution-gated graphene transistors for chemical and biological sensors. Advanced
Healthcare Materials 3(3): 313-331. doi:10.1002/ adhm.201300221.
Yang, F., Murugan,
R., Wang, S. & Ramakrishna, S. 2005. Electrospinning of nano/micro
scale poly(l-lactic acid) aligned fibers and their potential in neural tissue
engineering. Biomaterials 26(15): 2603-2610. doi:10.1016/j.
biomaterials.2004.06.051.
Yang, J., Zhu, J., Pei, R.,
Oliver, J.A., Landry, D.W., Stojanovic, M.N. &
Lin, Q. 2016. Integrated microfluidic aptasensor for
mass spectrometric detection of vasopressin in human plasma ultrafiltrate. Analytical Methods 8(26): 5190-5196. doi:10.1039/c5ay02979a.
Yang, W., Ratinac,
K.R., Ringer, S.R., Thordarson, P., Gooding, J.J.
& Braet, F. 2010. Carbon nanomaterials in
biosensors: Should you use nanotubes or graphene. Angewandte Chemie - International Edition 49(12): 2114-2138.
doi:10.1002/ anie.200903463.
Zhang, A. & Zheng, G. 2015. Semiconductor
nanowires for biosensors. In Semiconductor Nanowires: Materials, Synthesis,
Characterization and Applications. Cambridge: Woodhead Publishing. pp.
471-490. doi:10.1016/B978-1- 78242-253-2.00017-7.
Zhang, B. & Cui, T. 2011. An
ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Applied Physics Letters 98(7):
2011-2014. doi:10.1063/1.3557504.
Zheng, C., Huang, L., Zhang, H.,
Sun, Z., Zhang, Z. & Zhang, G.J. 2015. Fabrication of ultrasensitive
field-effect transistor DNA biosensors by a directional transfer technique
based on CVD-grown graphene. ACS Applied Materials and Interfaces 7(31):
16953-16959. doi:10.1021/acsami.5b03941.
Zheng, G., Patolsky,
F., Cui, Y., Wang, W.U. & Lieber, C.M. 2005.
Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 23(10): 1294-1301. doi:10.1038/nbt1138.
*Corresponding
author; email: azlanhamzah@ukm.edu.my