Sains Malaysiana 46(8)(2017): 1259–1267

http://dx.doi.org/10.17576/jsm-2017-4608-11

 

California Bearing Ratio Tests of Enzyme-treated Sedimentary Residual Soil Show No Improvement

(Ujian Nisbah Bearing California ke atas Sedimen Sisa Tanih Terawat Enzim Menunjukkan Tiada Sebarang Penambahbaikan)

 

TANVEER AHMED KHAN1*, MOHD RAIHAN TAHA1,2, ALI ASGHAR FIROOZI1 & ALI AKBAR FIROOZI1

 

1Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 18 October 2015/Accepted: 7 February 2017

 

ABSTRACT

Environmental concerns have significantly influenced the construction industry regarding the identification and use of environmentally sustainable construction materials. In this context, enzymes (organic materials) have been introduced recently for ground improvement projects such as pavements and embankments. The present experimental study was carried out in order to evaluate the compressive strength of a sedimentary residual soil treated with three different types of enzymes, as assessed through a California bearing ratio (CBR) test. Controlled untreated and treated soil samples containing four dosages (the recommended dose and two, five and 10 times the recommended dose) were prepared, sealed and cured for four months. Following the curing period, samples were soaked in water for four days before the CBR tests were administered. These tests showed no improvement in the soil is compressive strength; in other words, samples prepared even at higher dosages did not exhibit any improvement. Nuclear magnetic resonance (NMR) spectroscopy tests were carried out on three enzymes in order to study the functional groups present in them. Furthermore, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) tests were executed for untreated and treated soil samples to determine if any chemical reaction took place between the soil and the enzymes. Neither of the tests (XRD nor FESEM) revealed any change. In fact, the XRD patterns and FESEM images for untreated and treated soil samples were indistinguishable.

 

Keywords: California bearing ratio test; enzymes; improvement; soil

 

ABSTRAK

Kebimbangan terhadap alam sekitar secara signifikan mempengaruhi industri pembinaan mengenai pengenalan dan penggunaan bahan-bahan pembinaan alam sekitar yang mampan. Dalam konteks ini, enzim (bahan organik) telah diperkenalkan bagi penambahbaikan projek permukaan tanah seperti hamparan dan benteng. Penyelidikan ini telah dijalankan untuk menilai kekuatan mampatan sisa sedimen tanah yang dirawat dengan tiga jenis enzim, yang diperoleh melalui ujian nisbah bearing California (CBR). Sampel kawalan tanah yang tidak dirawat dan dirawat dan empat dos (dos yang disyorkan serta dua, lima dan 10 kali dos yang disyorkan) telah disediakan, ditutup dan diolah selama empat bulan. Berikutan tempoh pengolahan, sampel telah direndam dalam air selama empat hari sebelum ujian CBR dijalankan. Ujian ini menunjukkan tidak ada peningkatan dalam kekuatan mampatan tanah; dalam erti kata lain, sampel yang disediakan walaupun pada dos yang lebih tinggi juga tidak menunjukkan apa-apa peningkatan. Ujian spektroskopi resonans nukleus magnet (NMR) telah dijalankan ke atas ketiga-tiga enzim dalam usaha untuk mengkaji kumpulan fungsian yang wujud di dalamnya. Selain itu, ujian pembelauan sinar-x (XRD) dan mikroskopi pancaran medan imbasan elektron (FESEM) telah dijalankan bagi sampel tanah tidak dirawat dan dirawat untuk menentukan jika terdapat tindak balas kimia yang berlaku antara tanah dan enzim tersebut. Kedua-dua ujian (XRD atau FESEM) tidak menunjukkan apa-apa perubahan. Malah, pola XRD dan imej FESEM untuk sampel tanah tidak dirawat dan dirawat tidak dapat dibezakan.

 

Kata kunci: Enzim; penambahbaikan; tanah; ujian nisbah bearing California

REFERENCES

Abreu, D., Jefferson, I., Braithwaite, P. & Chapman, D. 2008. Why is sustainability important in geotechnical engineering? Geosustainability and Geohazard Mitigation, Proceedings of Geocongress. pp. 9-12.

Agarwal, P. & Kaur, S. 2014. Effect of bio-enzyme stabilization on unconfined compressive strength of expansive soil. International Journal of Research in Engineering and Technology 3(5): 30-33.

Ahmad, Z.M., Ahmad, Y. & Hitam Ariffin, D. 1999. National seminar on mechanization in oil palm plantation. Towards improving productivity through mechanization. Proceedings National Seminar on Mechanization in Oil Palm Plantation. Towards Improving Productivity Through Mechanization June 30-1 Bangi, Selangor, Malaysia.

Brandon, F., Ding, C., Gary, H. & Charles, R. 2010. Permazyme Testing Volume I: Final Testing Summary Report. California Pavement Preservation Center.

Cabalar, A.F. & Canakci, H. 2011. Direct shear tests on sand treated with xanthan gum. Proceedings of the ICE-Ground Improvement 164(2): 57-64.

DeJong, J.T., Mortensen, B.M., Martinez, B.C. & Nelson, D.C. 2010. Bio-mediated soil improvement. Ecological Engineering 36(2): 197-210.

Dessy, A., Abyor, N. & Hadi, H. 2011. An overview of biocement production from microalgae. International Journal of Science and Engineering 2(2): 31-33.

Gottlieb, H.E., Kotlyar, V. & Nudelman, A. 1997. Nmr chemical shifts of common laboratory solvents as trace impurities. The Journal of Organic Chemistry 62(21): 7512-7515.

Jefferis, S.A. 2008. Moving towards sustainability in geotechnical engineering. GeoCongress 178: 844-851.

Kestler, M.A. 2009. Stabilization selection guide for aggregate-and native-surfaced low-volume roads Ed.: US Department of Agriculture, Forest Service, National Technology & Development Program.

Khan, T.A. & Taha, M.R. 2015. Effect of three bioenzymes on compaction, consistency limits, and strength characteristics of a sedimentary residual soil. Advances in Materials Science and Engineering 2015: Article ID. 798965

Khedari, J., Watsanasathaporn, P. & Hirunlabh, J. 2005. Development of fibre-based soil-cement block with low thermal conductivity. Cement and Concrete Composites 27(1): 111-116.

Lacuoture, A. & Gonzalez, H. 1995. Usage of organic enzymes for the stabilization of natural base soils and sub-bases in Bagota. Pontificia Universidad Jevariana, Faculty of Engineering.

Lee, P.Y. & Suedkamp, R.J. 1972. Characteristics of irregularly shaped compaction curves of soils. Highway Research Record No. 381.

Mgangira, M. 2009. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils. SATC 2009.

Milburn, J.P. & Parsons, R.L. 2004. Performance of soil stabilization agents. Kanas Department of Transportation.

Monasterio, O. 2014. Nomenclature for the applications of nuclear magnetic resonance to the study of enzymes. Perspectives in Science 1(1): 88-97.

Parsons, R.L. & Milburn, J.P. 2003. Engineering behavior of stabilized soils. Transportation Research Record: Journal of the Transportation Research Board 1837(1): 20-29.

Rauch, A.F., Katz, L.E. & Liljestrand, H.M. 2003. An analysis of the mechanisms and efficacy of three liquid chemical soil stabilizers. Centrer for Transportation Research, The University of Texas at Austin.

Rauch, A.F., Harmon, J.S., Katz, L.E. & Liljestrand, H.M. 2002. Measured effects of liquid soil stabilizers on engineering properties of clay. Transportation Research Record: Journal of the Transportation Research Board 1787(1): 33-41.

Scholen, D. 1992. Non-standard stabilizers. Report FHWA-FLP-92-011. FHWA, U.S. Department of Transportation, July 1992.

Shankar, A., Rai, H.K. & Mithanthaya, R. 2009. Bio-enzyme stabilized lateritic soil as a highway material. Indian Roads Congress Journal. Paper No. 553.

Shukla, M., Bose, S. & Sikdar, P. 2003. Bio-enzyme for stabilization of soil in road construction, a cost effective approach. Proceedings of the IRC Seminar Integrated Development of Rural and Arterial Road Networks for Socio- Economic Development, New Delhi.

Tingle, J.S., Newman, J.K., Larson, S.L., Weiss, C.A. & Rushing, J.F. 2007. Stabilization mechanisms of nontraditional additives. Transportation Research Record: Journal of the Transportation Research Board 1989(1): 59-67.

Tingle, J.S. & Santoni, R.L. 2003. Stabilization of clay soils with nontraditional additives. Transportation Research Record: Journal of the Transportation Research Board 1819(1): 72-84.

Venkatasubramanian, C. & Dhinakaran, G. 2011. Effect of bio-enzymatic soil stabilisation on uneonfined compressive strength and California bearing ratio. Journal of Engineering and Applied Sciences 6(5): 295-298.

Harrison, W.G. & White, G.N. 2008. X-ray diffraction techniques for soil mineral identification. In Methods of Soil Analysis: Part 5. Mineralogical Methods, edited by Ulery, A.L. & Drees, L.R. Madison: Soil Science Society of America. pp. 81-116.

 

 

*Corresponding author; email: takhan557@gmail.com

 

 

 

 

 

previous