Sains Malaysiana 46(8)(2017): 1259–1267
http://dx.doi.org/10.17576/jsm-2017-4608-11
California Bearing Ratio Tests of Enzyme-treated
Sedimentary Residual Soil Show No Improvement
(Ujian Nisbah Bearing California ke atas Sedimen Sisa Tanih Terawat Enzim Menunjukkan Tiada Sebarang Penambahbaikan)
TANVEER AHMED KHAN1*, MOHD RAIHAN TAHA1,2, ALI ASGHAR FIROOZI1 & ALI AKBAR FIROOZI1
1Department of Civil
and Structural Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Institute for
Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 18 October 2015/Accepted: 7 February 2017
ABSTRACT
Environmental concerns
have significantly influenced the construction industry regarding
the identification and use of environmentally sustainable construction
materials. In this context, enzymes (organic materials) have been
introduced recently for ground improvement projects such as pavements
and embankments. The present experimental study was carried out
in order to evaluate the compressive strength of a sedimentary
residual soil treated with three different types of enzymes, as
assessed through a California bearing ratio (CBR)
test. Controlled untreated and treated soil samples containing
four dosages (the recommended dose and two, five and 10 times
the recommended dose) were prepared, sealed and cured for four
months. Following the curing period, samples were soaked in water
for four days before the CBR tests
were administered. These tests showed no improvement in the soil
is compressive strength; in other words, samples prepared even
at higher dosages did not exhibit any improvement. Nuclear magnetic
resonance (NMR)
spectroscopy tests were carried out on three enzymes in order
to study the functional groups present in them. Furthermore, X-ray
diffraction (XRD)
and field emission scanning electron microscopy (FESEM)
tests were executed for untreated and treated soil samples to
determine if any chemical reaction took place between the soil
and the enzymes. Neither of the tests (XRD nor FESEM) revealed any change. In
fact, the XRD patterns and FESEM images for untreated and
treated soil samples were indistinguishable.
Keywords: California
bearing ratio test; enzymes; improvement; soil
ABSTRAK
Kebimbangan terhadap alam
sekitar secara
signifikan mempengaruhi industri pembinaan mengenai pengenalan dan penggunaan bahan-bahan pembinaan alam sekitar yang mampan. Dalam konteks ini, enzim
(bahan organik)
telah diperkenalkan bagi penambahbaikan projek permukaan tanah seperti hamparan
dan benteng.
Penyelidikan
ini telah dijalankan
untuk menilai
kekuatan mampatan sisa sedimen tanah
yang dirawat dengan
tiga jenis enzim,
yang diperoleh melalui
ujian nisbah bearing California
(CBR).
Sampel
kawalan tanah
yang tidak dirawat dan dirawat
dan empat
dos (dos yang disyorkan serta dua, lima dan 10 kali dos yang disyorkan)
telah disediakan, ditutup dan diolah
selama empat
bulan. Berikutan tempoh pengolahan,
sampel telah
direndam dalam air selama empat hari
sebelum ujian
CBR
dijalankan. Ujian ini menunjukkan
tidak ada
peningkatan dalam kekuatan mampatan tanah; dalam erti
kata lain, sampel yang disediakan
walaupun pada
dos yang lebih tinggi juga tidak menunjukkan apa-apa peningkatan.
Ujian spektroskopi resonans nukleus magnet (NMR) telah
dijalankan ke
atas ketiga-tiga enzim dalam usaha
untuk mengkaji
kumpulan fungsian yang wujud di dalamnya. Selain itu, ujian
pembelauan sinar-x
(XRD)
dan mikroskopi
pancaran medan
imbasan elektron
(FESEM)
telah dijalankan
bagi sampel tanah
tidak dirawat
dan dirawat untuk
menentukan jika
terdapat tindak balas kimia yang berlaku antara tanah dan enzim
tersebut. Kedua-dua ujian (XRD atau FESEM) tidak menunjukkan
apa-apa perubahan.
Malah, pola XRD dan imej FESEM untuk
sampel tanah tidak
dirawat dan
dirawat tidak dapat dibezakan.
Kata kunci: Enzim; penambahbaikan; tanah; ujian nisbah bearing California
REFERENCES
Abreu,
D., Jefferson, I., Braithwaite, P. & Chapman, D. 2008. Why is sustainability
important in geotechnical engineering? Geosustainability and Geohazard Mitigation, Proceedings
of Geocongress. pp. 9-12.
Agarwal, P. &
Kaur, S. 2014. Effect of bio-enzyme stabilization on
unconfined compressive strength of expansive soil. International
Journal of Research in Engineering and Technology 3(5): 30-33.
Ahmad, Z.M., Ahmad, Y.
& Hitam Ariffin, D.
1999. National seminar on mechanization in oil palm
plantation. Towards improving productivity through
mechanization. Proceedings National Seminar on
Mechanization in Oil Palm Plantation. Towards Improving
Productivity Through Mechanization June 30-1 Bangi, Selangor, Malaysia.
Brandon,
F., Ding, C., Gary, H. & Charles, R. 2010. Permazyme Testing Volume I: Final Testing Summary Report. California
Pavement Preservation Center.
Cabalar,
A.F. & Canakci, H. 2011. Direct shear tests on
sand treated with xanthan gum. Proceedings of the ICE-Ground Improvement 164(2):
57-64.
DeJong,
J.T., Mortensen, B.M., Martinez, B.C. & Nelson, D.C. 2010. Bio-mediated soil
improvement. Ecological Engineering 36(2): 197-210.
Dessy,
A., Abyor, N. & Hadi,
H. 2011. An overview of biocement production
from microalgae. International Journal of Science and Engineering 2(2):
31-33.
Gottlieb,
H.E., Kotlyar, V. & Nudelman,
A. 1997.
Nmr chemical
shifts of common laboratory solvents as trace impurities. The
Journal of Organic Chemistry 62(21): 7512-7515.
Jefferis, S.A. 2008. Moving towards sustainability in geotechnical engineering. GeoCongress 178: 844-851.
Kestler, M.A. 2009.
Stabilization selection guide for aggregate-and native-surfaced low-volume
roads Ed.: US Department of Agriculture, Forest Service, National Technology & Development Program.
Khan,
T.A. & Taha, M.R. 2015. Effect
of three bioenzymes on compaction, consistency
limits, and strength characteristics of a sedimentary residual soil. Advances
in Materials Science and Engineering 2015: Article ID. 798965
Khedari,
J., Watsanasathaporn, P. & Hirunlabh,
J. 2005. Development of fibre-based soil-cement
block with low thermal conductivity. Cement and Concrete Composites 27(1):
111-116.
Lacuoture,
A. & Gonzalez, H. 1995.
Usage of organic enzymes for the stabilization
of natural base soils and sub-bases in Bagota.
Pontificia Universidad Jevariana,
Faculty of Engineering.
Lee,
P.Y. & Suedkamp, R.J. 1972. Characteristics
of irregularly shaped compaction curves of soils. Highway Research
Record No. 381.
Mgangira, M. 2009. Evaluation of the effects of enzyme-based liquid chemical
stabilizers on subgrade soils. SATC 2009.
Milburn,
J.P. & Parsons, R.L. 2004. Performance of soil stabilization
agents. Kanas Department of Transportation.
Monasterio, O.
2014. Nomenclature for the applications of nuclear magnetic
resonance to the study of enzymes. Perspectives in Science 1(1):
88-97.
Parsons,
R.L. & Milburn, J.P. 2003. Engineering behavior of
stabilized soils. Transportation Research Record: Journal of the
Transportation Research Board 1837(1): 20-29.
Rauch,
A.F., Katz, L.E. & Liljestrand, H.M. 2003. An
analysis of the mechanisms and efficacy of three liquid chemical soil
stabilizers. Centrer for Transportation
Research, The University of Texas at Austin.
Rauch,
A.F., Harmon, J.S., Katz, L.E. & Liljestrand,
H.M. 2002. Measured effects of liquid soil stabilizers on engineering
properties of clay. Transportation Research Record: Journal of the
Transportation Research Board 1787(1): 33-41.
Scholen, D. 1992. Non-standard stabilizers. Report FHWA-FLP-92-011. FHWA, U.S.
Department of Transportation, July 1992.
Shankar,
A., Rai, H.K. & Mithanthaya, R. 2009. Bio-enzyme stabilized
lateritic soil as a highway material. Indian Roads
Congress Journal. Paper No. 553.
Shukla, M., Bose, S.
& Sikdar, P. 2003. Bio-enzyme
for stabilization of soil in road construction, a cost effective approach. Proceedings of the IRC Seminar Integrated Development of Rural and Arterial
Road Networks for Socio- Economic Development, New Delhi.
Tingle,
J.S., Newman, J.K., Larson, S.L., Weiss, C.A. & Rushing, J.F. 2007. Stabilization
mechanisms of nontraditional additives. Transportation Research
Record: Journal of the Transportation Research Board 1989(1): 59-67.
Tingle,
J.S. & Santoni, R.L. 2003. Stabilization of clay
soils with nontraditional additives. Transportation Research Record: Journal
of the Transportation Research Board 1819(1): 72-84.
Venkatasubramanian,
C. & Dhinakaran, G. 2011. Effect
of bio-enzymatic soil stabilisation
on uneonfined compressive strength and California bearing ratio.
Journal of Engineering and Applied
Sciences 6(5): 295-298.
Harrison,
W.G. & White, G.N. 2008. X-ray diffraction techniques for
soil mineral identification. In Methods of Soil Analysis: Part 5.
Mineralogical Methods, edited by Ulery, A.L.
& Drees, L.R. Madison: Soil Science Society of America. pp. 81-116.
*Corresponding
author; email: takhan557@gmail.com