Sains Malaysiana 47(10)(2018):
2349–2358
http://dx.doi.org/10.17576/jsm-2018-4710-11
Transforming Growth Factor Beta 3 Induced Human Adipose-Derived
Stem Cells for Auricular Chondrogenesis
(Mengubah Faktor
Pertumbuhan Beta 3 Aruhan
Stem Asal Manusia
Terbitan Adipos untuk
Aurikul Kondrogenesis)
SITI
NURHADIS
CHE
OMAR1,
BEE
SEE
GOH2,
MUHAMMAD
AZHAN
UBAIDAH2,
KHAIRUL
ANUARKHAIROJI3,
SHAMSUL
SULAIMAN3,
LOKMAN
SAIM2,4 & KIEN-HUI
CHUA1*
1Department of Physiology,
Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of Otorhinolaringology, Universiti
Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
3Tissue Engineering Centre,
Universiti Kebangsaan
Malaysia Medical Centre, 56000 Cheras,
Kuala Lumpur, Federal Territory, Malaysia
4School of Medicine, KPJ
Healthcare University College, Lot PT 17010 Persiaran
Seriemas, Kota Seriemas,
71800 Nilai, Negeri
Sembilan Darul Khusus, Malaysia
Received: 22 March 2018/Accepted:
5 June 2018
ABSTRACT
The
limitation of self-repair and proliferation capacity of chondrocytes
in cartilage reconstruction lead to alternative search of cell
source that can improve the auricular regeneration. Human
adipose-derived stem cells (HADSC) are an
alternative cell source that have unique characteristics
to self-renew and differentiate into various tissues making it
suitable for cell therapy and tissue engineering. This study aimed
to examine the chondrogenic differentiation
potential of (HADSC) in monolayer culture by
the presence of different transforming growth factor beta’s, TFG-β1,
-β2 and -β3. HADSC at passage 3 (1.5 × 105 cell/mL)
were cultured in chondrogenic medium
containing 5 ng/mL of different transforming growth factor beta’s,
TFG-β1,
-β2 and -β3 for 7, 14 and 21 days. Data analysis was
evaluated based on the growth rate of cells, cells morphological
changed, production of collagen type II and glycosaminoglycan
sulphate (sGAG). The quantitative RT-PCR was
carried out to determine the chondrogenic,
fibrogenic and hypertrophic gene expression levels. Differentiation
of HADSC into chondrocytes using TFG-β
indicates the occurrence of the chondrogenesis
process. The best chondrogenic differentiation
was observed in HADSC induced by TFG-β3 through the chondrocytes-like
cells morphology with cells aggregation and high production of
proteoglycan matrices compared to other TGF-βs
groups. Additionally, the expression of chondrocytes-specific
genes such as Type II collagen, Aggrecan
core protein, Elastin and Sox 9 was high. In conclusion, this
study has showed that TGF-β3
is the potential growth factor in producing chondrogenic
cells for auricular cartilage tissue engineering.
Keywords: Chondrocytes;
chondrogenic differentiation; human
adipose-derived stem; induction; tgf-β3
ABSTRAK
Kekurangan kapasiti pembaikan
dan proliferasi
kondrosit dalam pembentukan semula tisu rawan menyebabkan
penyelidikan kini
cenderung untuk mencari sumber sel baru yang dapat
membantu memperbaiki
tisu rawan aurikul
dengan lebih
baik. Sel stem adipos manusia (HADSC) dilihat
sebagai sumber
sel yang mempunyai ciri-ciri unik, boleh membahagi dengan sendiri dan membeza kepada
pelbagai tisu,
menyebabkan ia
sesuai digunakan
dalam terapi sel
dan kejuruteraan
tisu. Kajian ini
bertujuan menilai
tahap pembezaan kondrogeniknya secara monolapisan kultur
dengan kehadiran
faktor pertumbuhan transformasi beta yang berbeza iaitu TFG-β1,-β2 dan -β3. HADSC pada pasaj 3 (1.5 105 sel/mL) dikultur di dalam media kondrogenik yang mengandungi 5 ng/mL faktor pertumbuhan transformasi beta yang
berbeza iaitu
TFG-β1,-β2
dan -β3 selama
7, 14 dan 21 hari. Analisis data
dinilai berdasarkan
kepada kadar
pertumbuhan sel,
perubahan morfologi sel, pengeluaran kolagen jenis II dan glikoaminoglikan fosfat (sGAG).
Kuantitatif RT-PCR dijalankan
untuk menentukan
kadar ekspresi
gen kondrogenik, fibrogenik
dan hipertrofik.
Pembezaan HADSC kepada
kondrosit menggunakan
TFG-β
menunjukkan berlakunya
proses kondrogenesis. Pembezaan
kondrogenik yang terbaik
dilihat pada HADSC yang
diaruhkan oleh
TFG-β3
melalui perubahan
morfologi dengan pembentukan sel agregasi dan penghasilan
matrik proteoglikan
yang tinggi apabila dibandingkan dengan kumpulan TFG-β yang lain. Tambahan pula,
pengekspresan gen spesifik kondrogenik iaitu Kolagen jenis II, Elastin, Protien teras agrekan
dan Sox 9 menunjukkan
peningkatan. Kesimpulannya, kajian ini telah menunjukkan TFG-β3
berpotensi sebagai
faktor pertumbuhan yang berupaya membantu penghasilan sel yang bercirikan kondrosit aurikular bagi strategi kejuruteraan tisu rawan aurikular.
Kata kunci: Aruhan;
kondrosit; pembezaan
kondrogenik; sel stem adipos manusia; tgf-β3
REFERENCES
Awad,
H.A., Halvorsen, Y.D.C. & Gimble,
J.M. 2003. Effects of transforming growth factor
b 1 and dexamethasone on the growth and chondrogenic
differentiation of adipose-derived stromal cells. Tissue
Eng. 9(6): 1301-1312.
Barry,
F., Boynton, R.E., Liu, B. & Murphy, J.M. 2001. Chondrogenic differentiation of mesenchymal stem cells from
bone marrow: Differentiation-dependent gene expression of matrix
components. Experimental Cell Research 268(2): 189-200.
doi:10.1006/excr.2001.5278.
Cai, Z.,
Pan, B., Jiang, H. & Zhang, L. 2015. Chondrogenesis of human adipose-derived stem cells by in vivo co-graft with
auricular chondrocytes from microtia.
Aesthetic Plastic Surgery 39(3): 431-439. doi:10.1007/s00266-015-0481-0.
Cho,
B.C., Kim, J.Y. & Byun, J.S. 2007. Two-stage reconstruction of the auricle in congenital microtia using autogenous costal cartilage. Journal
of Plastic, Reconstructive and Aesthetic Surgery 60(9): 998-1006.
doi:10.1016/j.bjps.2005.12.052.
Chua,
K.H., Aminuddin, B.S., Fuzina,
N.H. & Ruszymah, B.H.I. 2005. Insulin-Transferrin-Selenium
prevent human chondrocyte dedifferentiation
and promote the formation of high quality tissue engineered human
hyaline cartilage. European Cells and Materials 9: 58-67.
Crecente-Campo,
J., Borrajo, E., Vidal, A. & Garcia-Fuentes,
M. 2017.
New scaffolds encapsulating TGF-β3/BMP-7
combinations driving strong chondrogenic
differentiation. European Journal of Pharmaceutics and
Biopharmaceutics 114: 69-78. doi:10.1016/j.ejpb.2016.12.021.
De
Ugarte, D.A., Morizono,
K., Elbarbary, A., Alfonso, Z., Zuk,
P.A., Zhu, M., Dragoo, J. L., Ashjiana,
P., Thomasa, B., Benhaima,
P., Chenc, I., Fraserb,
J. & Hedricka, M.H. 2003. Comparison of multi-lineage cells from human adipose tissue and bone
marrow. Cells Tissues Organs 174(3): 101-109. doi:10.1159/000071150.
Estes,
B.T., Wu, A.W. & Guilak, F. 2006. Potent induction of chondrocytic differentiation
of human adipose-derived adult stem cells by bone morphogenetic
protein 6. Arthritis and Rheumatism 54(4): 1222-1232.
doi:10.1002/art.21779.
Goh,
B.S., Che Omar, S.N., Ubaidah,
M.A., Saim, L., Sulaiman,
S. & Chua, K.H. 2017. Chondrogenesis
of human adipose derived stem cells for future microtia
repair using co-culture technique. Acta
Oto-Laryngologica 137(4): 432-441.
doi:10 .1080/00016489.2016.1257151.
Hamid,
A.A., Idrus, R.B.H., Saim,
A.B., Somasumdaram, S. & Chua, K.H.
2012. Characterization of human adipose-derived stem cells and expression
of chondrogenic genes during induction
of cartilage differentiation. Clinics 67(2): 99-106.
doi:10.6061/clinics/2012(02)03.
Hohman, M.H.,
Lindsay, R.W., Pomerantseva, I., Bichara, D.A., Zhao, X., Johnson, M., Kulig,
K.M., Sundback, C.A., Randolph, M.A.,
Vacanti, J.P., Cheney, M.L. & Hadlock,
T.A. 2014. Ovine model for auricular reconstruction: Porous polyethylene
implants. Annals of Otology, Rhinology and Laryngology 123(2):
135-140. doi:10.1177/0003489414523710.
Huang,
B.J., Hu, J.C. & Athanasiou, K.A.
2016. Cell-based tissue engineering strategies used in the clinical repair
of articular cartilage. Biomaterials 98: 1-22. doi:10.1016/j. biomaterials.2016.04.018.
Hui,
C.K., Safwani, W.K.Z.W., Chin, S.S.,
Malek, A.A.S.A., Hassan, N., Fazil,
M.S., Rooshdi, R.A.W.R.M., Hamid, A.A.
& Sathappan, S. 2012. Human serum promotes the proliferation
but not the stemness genes expression
of human adipose-derived stem cells. Biotechnology and Bioprocess
Engineering 17(6): 1306-1313. doi:10.1007/s12257-012-
0354-1.
Indrawattana,
N., Chen, G., Tadokoro, M., Shann, L.H.,
Ohgushi, H., Tateishi, T., Tanaka,
J. & Bunyaratvej, A. 2004. Growth factor combination for chondrogenic
induction from human mesenchymal stem cell. Biochemical
and Biophysical Research Communications 320(3): 914-919. doi:10.1016/j.
bbrc.2004.06.029.
Ishak, M.F.,
See, G.B., Hui, C.K., Abdullah, A., Saim,
L., Saim, A. & Idrus, R.H. 2015.
The formation of human auricular cartilage from microtic
tissue: An in vivo study. International Journal of Pediatric
Otorhinolaryngology 79(10): 1634- 1639. doi:10.1016/j.ijporl.2015.06.034.
Ishak,
M.F., Chua, K.H., Asma, A., Saim,
L., Aminuddin, B.S., Ruszymah,
B.H.I. & Goh, B.S. 2011. Stem cell genes are poorly expressed
in chondrocytes from microtic cartilage.
International Journal of Pediatric Otorhinolaryngology 75(6):
835-840. doi:10.1016/j.ijporl.2011.03.021.
Kamil,
S.H., Woda, M., Bonassar,
L.J., Novitsky, Y.W., Vacanti, C.A.,
Eavey, R.D. & Vacanti, M.P. 2003. Normal
features of tissue-engineered auricular cartilage by flow cytometry
and histology: Patient safety. Otolaryngology - Head and Neck
Surgery 129(4): 390-396. doi:10.1016/S0194-
5998(03)00710-1.
Liao,
J., Qu, Y., Chu, B., Zhang, X. & Qian, Z. 2015. Biodegradable CSMA/PECA/Graphene porous hybrid scaffold for cartilage
tissue engineering. Scientific Reports 5: 9879.
doi:10.1038/srep09879.
Liu,
X., Liu, J., Kang, N., Yan, L., Wang, Q., Fu, X., Zhang, Y., Xiao,
R. & Cao, Y. 2014.
Role of insulin-transferrin-selenium in auricular
chondrocyte proliferation and engineered cartilage formation in
vitro. International Journal of Molecular Sciences
15(1): 1525-1537. doi:10.3390/ ijms15011525.
Luquetti, D.V.,
Heike, C.L., Hing, A.V., Cunningham,
M.L. & Cox, T.C. 2012.
Microtia: Epidemiology and genetics.
American Journal of Medical Genetics, Part A 158 A(1):
124-139. doi:10.1002/ajmg.a.34352.
Mueller,
M.B. & Tuan, R.S. 2008. Functional characterization of hypertrophy
in chondrogenesis of human mesenchymal
stem cells. Arthritis and Rheumatism 58(5): 1377-1388.
doi:10.1002/art.23370.
Puetzer, J.L.,
Petitte, J.N. & Loboa,
E.G. 2010.
Comparative review of growth factors for induction of three-dimensional
in vitro chondrogenesis in human mesenchymal
stem cells isolated from bone marrow and adipose tissue. Tissue
Engineering. Part B, Reviews 16(4): 435-444.
doi:10.1089/ ten.teb.2009.0705.
Ruszymah, B.H.I.,
Lokman, B.S., Asma,
A., Munirah, S., Chua, K., Mazlyzam,
A.L., Isa, M.R., Fuzina, N.H. &
Aminuddin, B.S. 2007. Pediatric auricular
chondrocytes gene expression analysis in monolayer culture and
engineered elastic cartilage. International Journal
of Pediatric Otorhinolaryngology 71(8): 1225-1234. doi:10.1016/j.ijporl.2007.04.014.
Ude, C.C.,
Chen, H.C., Norhamdan, M.Y., Azizi, B.M., Aminuddin, B.S. &
Ruszymah, B.H.I. 2017. The
evaluation of cartilage differentiations using transforming growth
factor beta3 alone and with combination of bone morphogenetic
protein-6 on adult stem cells. Cell and Tissue Banking
18(3): 355-367. doi:10.1007/s10561-017-9638-1.
Wilson,
A., Butler, P.E. & Seifalian, A.M.
2011. Adipose-derived stem
cells for clinical applications: A review. Cell Proliferation
44(1): 86-98. doi:10.1111/j.1365- 2184.2010.00736.x.
Zhang, L., He, A., Yin,
Z., Yu, Z., Luo, X., Liu, W., Zhang, W., Cao, Y., Liu, Y. &
Zhou, G. 2014. Regeneration of human-ear-shaped cartilage by co-culturing
human microtia chondrocytes with BMSCs. Biomaterials 35(18):
4878-4887. doi:10.1016/j.biomaterials.2014.02.043.
Zhang,
X., Xue, K., Zhou, J., Xu, P., Huang,
H. & Liu, K. 2015.
Chondrogenic differentiation of bone marrow-derived stem cells cultured in the
supernatant of elastic cartilage cells. Molecular Medicine
Reports 12(4): 5355-5360. doi:10.3892/
mmr.2015.4113.
Zhao,
Y., Waldman, S.D. & Flynn, L.E. 2012. The effect of
serial passaging on the proliferation and differentiation of bovine
adipose-derived stem cells. Cells Tissues Organs 195(5):
414-427. doi:10.1159/000329254.
Zhou, Q., Li, B., Zhao,
J., Pan, W., Xu, J. & Chen, S. 2016. IGF-I induces adipose
derived mesenchymal cell chondrogenic
differentiation in vitro and enhances chondrogenesis
in vivo. In Vitro Cellular and Developmental Biology - Animal
52(3): 356-364. doi:10.1007/s11626-015-9969-9.
*Corresponding
author; email: ckienhui@gmail.com