Sains Malaysiana 47(10)(2018): 2349–2358

http://dx.doi.org/10.17576/jsm-2018-4710-11

 

Transforming Growth Factor Beta 3 Induced Human Adipose-Derived Stem Cells for Auricular Chondrogenesis

(Mengubah Faktor Pertumbuhan Beta 3 Aruhan Stem Asal Manusia Terbitan Adipos untuk Aurikul Kondrogenesis)

 

SITI NURHADIS CHE OMAR1, BEE SEE GOH2, MUHAMMAD AZHAN UBAIDAH2, KHAIRUL ANUARKHAIROJI3, SHAMSUL SULAIMAN3, LOKMAN SAIM2,4 & KIEN-HUI CHUA1*

 

1Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Otorhinolaringology, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

4School of Medicine, KPJ Healthcare University College, Lot PT 17010 Persiaran Seriemas, Kota Seriemas, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

Received: 22 March 2018/Accepted: 5 June 2018

 

ABSTRACT

The limitation of self-repair and proliferation capacity of chondrocytes in cartilage reconstruction lead to alternative search of cell source that can improve the auricular regeneration. Human adipose-derived stem cells (HADSC) are an alternative cell source that have unique characteristics to self-renew and differentiate into various tissues making it suitable for cell therapy and tissue engineering. This study aimed to examine the chondrogenic differentiation potential of (HADSC) in monolayer culture by the presence of different transforming growth factor beta’s, TFG-β1, -β2 and -β3. HADSC at passage 3 (1.5 × 105 cell/mL) were cultured in chondrogenic medium containing 5 ng/mL of different transforming growth factor beta’s, TFG-β1, -β2 and -β3 for 7, 14 and 21 days. Data analysis was evaluated based on the growth rate of cells, cells morphological changed, production of collagen type II and glycosaminoglycan sulphate (sGAG). The quantitative RT-PCR was carried out to determine the chondrogenic, fibrogenic and hypertrophic gene expression levels. Differentiation of HADSC into chondrocytes using TFG-β indicates the occurrence of the chondrogenesis process. The best chondrogenic differentiation was observed in HADSC induced by TFG-β3 through the chondrocytes-like cells morphology with cells aggregation and high production of proteoglycan matrices compared to other TGF-βs groups. Additionally, the expression of chondrocytes-specific genes such as Type II collagen, Aggrecan core protein, Elastin and Sox 9 was high. In conclusion, this study has showed that TGF-β3 is the potential growth factor in producing chondrogenic cells for auricular cartilage tissue engineering.

 

Keywords: Chondrocytes; chondrogenic differentiation; human adipose-derived stem; induction; tgf-β3

 

ABSTRAK

Kekurangan kapasiti pembaikan dan proliferasi kondrosit dalam pembentukan semula tisu rawan menyebabkan penyelidikan kini cenderung untuk mencari sumber sel baru yang dapat membantu memperbaiki tisu rawan aurikul dengan lebih baik. Sel stem adipos manusia (HADSC) dilihat sebagai sumber sel yang mempunyai ciri-ciri unik, boleh membahagi dengan sendiri dan membeza kepada pelbagai tisu, menyebabkan ia sesuai digunakan dalam terapi sel dan kejuruteraan tisu. Kajian ini bertujuan menilai tahap pembezaan kondrogeniknya secara monolapisan kultur dengan kehadiran faktor pertumbuhan transformasi beta yang berbeza iaitu TFG-β1,-β2 dan -β3. HADSC pada pasaj 3 (1.5 105 sel/mL) dikultur di dalam media kondrogenik yang mengandungi 5 ng/mL faktor pertumbuhan transformasi beta yang berbeza iaitu TFG-β1,-β2 dan -β3 selama 7, 14 dan 21 hari. Analisis data dinilai berdasarkan kepada kadar pertumbuhan sel, perubahan morfologi sel, pengeluaran kolagen jenis II dan glikoaminoglikan fosfat (sGAG). Kuantitatif RT-PCR dijalankan untuk menentukan kadar ekspresi gen kondrogenik, fibrogenik dan hipertrofik. Pembezaan HADSC kepada kondrosit menggunakan TFGmenunjukkan berlakunya proses kondrogenesis. Pembezaan kondrogenik yang terbaik dilihat pada HADSC yang diaruhkan oleh TFG-β3 melalui perubahan morfologi dengan pembentukan sel agregasi dan penghasilan matrik proteoglikan yang tinggi apabila dibandingkan dengan kumpulan TFG-β yang lain. Tambahan pula, pengekspresan gen spesifik kondrogenik iaitu Kolagen jenis II, Elastin, Protien teras agrekan dan Sox 9 menunjukkan peningkatan. Kesimpulannya, kajian ini telah menunjukkan TFG-β3 berpotensi sebagai faktor pertumbuhan yang berupaya membantu penghasilan sel yang bercirikan kondrosit aurikular bagi strategi kejuruteraan tisu rawan aurikular.

 

Kata kunci: Aruhan; kondrosit; pembezaan kondrogenik; sel stem adipos manusia; tgf-β3

REFERENCES

Awad, H.A., Halvorsen, Y.D.C. & Gimble, J.M. 2003. Effects of transforming growth factor b 1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9(6): 1301-1312.

Barry, F., Boynton, R.E., Liu, B. & Murphy, J.M. 2001. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Experimental Cell Research 268(2): 189-200. doi:10.1006/excr.2001.5278.

Cai, Z., Pan, B., Jiang, H. & Zhang, L. 2015. Chondrogenesis of human adipose-derived stem cells by in vivo co-graft with auricular chondrocytes from microtia. Aesthetic Plastic Surgery 39(3): 431-439. doi:10.1007/s00266-015-0481-0.

Cho, B.C., Kim, J.Y. & Byun, J.S. 2007. Two-stage reconstruction of the auricle in congenital microtia using autogenous costal cartilage. Journal of Plastic, Reconstructive and Aesthetic Surgery 60(9): 998-1006. doi:10.1016/j.bjps.2005.12.052.

Chua, K.H., Aminuddin, B.S., Fuzina, N.H. & Ruszymah, B.H.I. 2005. Insulin-Transferrin-Selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. European Cells and Materials 9: 58-67.

Crecente-Campo, J., Borrajo, E., Vidal, A. & Garcia-Fuentes, M. 2017. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. European Journal of Pharmaceutics and Biopharmaceutics 114: 69-78. doi:10.1016/j.ejpb.2016.12.021.

De Ugarte, D.A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P.A., Zhu, M., Dragoo, J. L., Ashjiana, P., Thomasa, B., Benhaima, P., Chenc, I., Fraserb, J. & Hedricka, M.H. 2003. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3): 101-109. doi:10.1159/000071150.

Estes, B.T., Wu, A.W. & Guilak, F. 2006. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis and Rheumatism 54(4): 1222-1232. doi:10.1002/art.21779.

Goh, B.S., Che Omar, S.N., Ubaidah, M.A., Saim, L., Sulaiman, S. & Chua, K.H. 2017. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique. Acta Oto-Laryngologica 137(4): 432-441. doi:10 .1080/00016489.2016.1257151.

Hamid, A.A., Idrus, R.B.H., Saim, A.B., Somasumdaram, S. & Chua, K.H. 2012. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics 67(2): 99-106. doi:10.6061/clinics/2012(02)03.

Hohman, M.H., Lindsay, R.W., Pomerantseva, I., Bichara, D.A., Zhao, X., Johnson, M., Kulig, K.M., Sundback, C.A., Randolph, M.A., Vacanti, J.P., Cheney, M.L. & Hadlock, T.A. 2014. Ovine model for auricular reconstruction: Porous polyethylene implants. Annals of Otology, Rhinology and Laryngology 123(2): 135-140. doi:10.1177/0003489414523710.

Huang, B.J., Hu, J.C. & Athanasiou, K.A. 2016. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98: 1-22. doi:10.1016/j. biomaterials.2016.04.018.

Hui, C.K., Safwani, W.K.Z.W., Chin, S.S., Malek, A.A.S.A., Hassan, N., Fazil, M.S., Rooshdi, R.A.W.R.M., Hamid, A.A. & Sathappan, S. 2012. Human serum promotes the proliferation but not the stemness genes expression of human adipose-derived stem cells. Biotechnology and Bioprocess Engineering 17(6): 1306-1313. doi:10.1007/s12257-012- 0354-1.

Indrawattana, N., Chen, G., Tadokoro, M., Shann, L.H., Ohgushi, H., Tateishi, T., Tanaka, J. & Bunyaratvej, A. 2004. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochemical and Biophysical Research Communications 320(3): 914-919. doi:10.1016/j. bbrc.2004.06.029.

Ishak, M.F., See, G.B., Hui, C.K., Abdullah, A., Saim, L., Saim, A. & Idrus, R.H. 2015. The formation of human auricular cartilage from microtic tissue: An in vivo study. International Journal of Pediatric Otorhinolaryngology 79(10): 1634- 1639. doi:10.1016/j.ijporl.2015.06.034.

Ishak, M.F., Chua, K.H., Asma, A., Saim, L., Aminuddin, B.S., Ruszymah, B.H.I. & Goh, B.S. 2011. Stem cell genes are poorly expressed in chondrocytes from microtic cartilage. International Journal of Pediatric Otorhinolaryngology 75(6): 835-840. doi:10.1016/j.ijporl.2011.03.021.

Kamil, S.H., Woda, M., Bonassar, L.J., Novitsky, Y.W., Vacanti, C.A., Eavey, R.D. & Vacanti, M.P. 2003. Normal features of tissue-engineered auricular cartilage by flow cytometry and histology: Patient safety. Otolaryngology - Head and Neck Surgery 129(4): 390-396. doi:10.1016/S0194- 5998(03)00710-1.

Liao, J., Qu, Y., Chu, B., Zhang, X. & Qian, Z. 2015. Biodegradable CSMA/PECA/Graphene porous hybrid scaffold for cartilage tissue engineering. Scientific Reports 5: 9879. doi:10.1038/srep09879.

Liu, X., Liu, J., Kang, N., Yan, L., Wang, Q., Fu, X., Zhang, Y., Xiao, R. & Cao, Y. 2014. Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro. International Journal of Molecular Sciences 15(1): 1525-1537. doi:10.3390/ ijms15011525.

Luquetti, D.V., Heike, C.L., Hing, A.V., Cunningham, M.L. & Cox, T.C. 2012. Microtia: Epidemiology and genetics. American Journal of Medical Genetics, Part A 158 A(1): 124-139. doi:10.1002/ajmg.a.34352.

Mueller, M.B. & Tuan, R.S. 2008. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis and Rheumatism 58(5): 1377-1388. doi:10.1002/art.23370.

Puetzer, J.L., Petitte, J.N. & Loboa, E.G. 2010. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Engineering. Part B, Reviews 16(4): 435-444. doi:10.1089/ ten.teb.2009.0705.

Ruszymah, B.H.I., Lokman, B.S., Asma, A., Munirah, S., Chua, K., Mazlyzam, A.L., Isa, M.R., Fuzina, N.H. & Aminuddin, B.S. 2007. Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage. International Journal of Pediatric Otorhinolaryngology 71(8): 1225-1234. doi:10.1016/j.ijporl.2007.04.014.

Ude, C.C., Chen, H.C., Norhamdan, M.Y., Azizi, B.M., Aminuddin, B.S. & Ruszymah, B.H.I. 2017. The evaluation of cartilage differentiations using transforming growth factor beta3 alone and with combination of bone morphogenetic protein-6 on adult stem cells. Cell and Tissue Banking 18(3): 355-367. doi:10.1007/s10561-017-9638-1.

Wilson, A., Butler, P.E. & Seifalian, A.M. 2011. Adipose-derived stem cells for clinical applications: A review. Cell Proliferation 44(1): 86-98. doi:10.1111/j.1365- 2184.2010.00736.x.

Zhang, L., He, A., Yin, Z., Yu, Z., Luo, X., Liu, W., Zhang, W., Cao, Y., Liu, Y. & Zhou, G. 2014. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials 35(18): 4878-4887. doi:10.1016/j.biomaterials.2014.02.043.

Zhang, X., Xue, K., Zhou, J., Xu, P., Huang, H. & Liu, K. 2015. Chondrogenic differentiation of bone marrow-derived stem cells cultured in the supernatant of elastic cartilage cells. Molecular Medicine Reports 12(4): 5355-5360. doi:10.3892/ mmr.2015.4113.

Zhao, Y., Waldman, S.D. & Flynn, L.E. 2012. The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells. Cells Tissues Organs 195(5): 414-427. doi:10.1159/000329254.

Zhou, Q., Li, B., Zhao, J., Pan, W., Xu, J. & Chen, S. 2016. IGF-I induces adipose derived mesenchymal cell chondrogenic differentiation in vitro and enhances chondrogenesis in vivo. In Vitro Cellular and Developmental Biology - Animal 52(3): 356-364. doi:10.1007/s11626-015-9969-9.

 

 

*Corresponding author; email: ckienhui@gmail.com

 

 

 

 

 

previous