Sains Malaysiana 47(10)(2018):
2369–2379
http://dx.doi.org/10.17576/jsm-2018-4710-13
Chondrogenesis of
Adipose-Derived Stem Cells with Chondrocytes in Low Serum towards
Clinical Application
(Sel Asal
Kondrogenesis Terbitan Adipos dengan Kondrosit
dalam Serum Rendah
untuk Aplikasi Klinikal)
ADILA
A HAMID1*,
SATISH
VAARMAN
JEYABALAN1,
ALEZA
OMAR1,
NIK
ZATTIL
HANAN
MOHD
YASIN1,
WONG
TZENG
LIN1,
LIAU
LING
LING1,
NUR
AZURAH
ABDUL
GHANI1,
ANEEZA
KHAIRIYAH
WAN
HAMIZAN1
& CHUA KIEN HUI1
1Department
of Physiology, Faculty of Medicine, Universiti
Kebangsaan Malaysia Medical Centre, Jalan
Yaacob Latiff,
Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department
of Obstetrics and Gynaecology, Universiti
Kebangsaan Malaysia Medical Centre,
Jalan Yaacob Latiff,
Bandar Tun Razak,
56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
3Department of Otorhinolaryngology,
Universiti Kebangsaan
Malaysia Medical Centre, Jalan Yaacob
Latiff, Bandar Tun
Razak, 56000 Cheras, Kuala Lumpur,
Federal Territory, Malaysia
Received:
22 March 2018/Accepted: 5 June 2018
ABSTRACT
Currently,
fetal bovine serum (FBS) have been widely use in culture
media to promote human cell proliferation. However, the usage of FBS for cell therapy in clinical
application was associated with the risk of viral and prion transmission
as well as immune rejection. To provide an option for this risk,
this study was conducted to determine the effect of adipose derived
stem cells (ADSCs)
co-culture with chondrocyte in promoting cell proliferation and
chondrogenesis toward FBS free
condition. ADSCs co-cultured with chondrocyte at the ratio of 1:1,
2:1 and 1:2 were tested. Cell morphology changes, cell proliferation
and gene expression level of stemness
(Oct4, FGF-4,
Nanog) and
chondrogenic (Collagen Type II, ACP)
were assessed. The results showed ADSCs in all co-culture groups
changed morphology from fibroblastic spindle to polygonal shape
which resembled chondrocytes. The morphological changes were accompanied
with increased expression of chondrogenic
genes; denoted chondrogenesis process. While maintaining expression of stemness genes indicated continuation of cell proliferation.
From the three co-culture groups tested; ADSCs
and chondrocytes (1:1 ratio) have been shown to exert better effects
in promoting cell proliferation and chondrogenesis.
In conclusion, ADSCs could replace FBS to
grow sufficient number of chondrogenic
cells to repair cartilage injury in the near future. Further in
vivo study should be performed to test the effectiveness of this
co-culture technique in cartilage injury repair.
Keywords: Cartilage;
chondrocyte; clinical application; serum; stem cell
ABSTRAK
Pada masa kini, serum fetus bovin (FBS) telah
digunakan secara meluas di dalam media kultur sebagai faktor penggalak pertumbuhan sel. Namun begitu, penggunaan FBS
untuk terapi sel
secara klinikal
dikaitkan dengan risiko transmisi virus dan prion serta tolakan imun.
Bagi menangani
risiko ini,
kajian ini dijalankan
bagi menentukan
kesan ko-kultur sel stem adipos (ADSCs)
dan kondrosit
terhadap proliferasi sel dan kondrogenesis
kearah kondisi
pengkulturan bebas FBS.
ADSCs dikultur
bersama kondrosit
dengan nisbah 1:1, 1:2 dan 2:1 telah diuji.
Perubahan
morfologi sel, proliferasi sel dan ekspresi gen kesteman (Oct4, FGF-4, Nanog)
dan gen kondrogenik
(kolagen jenis II dan ACP) telah
dinilai. Keputusan kajian mendapati
ADSCs
dalam semua
kumpulan ko-kultur berubah morfologi daripada bentuk fibroblas memanjang kepada bentuk poligon
yang menyerupai kondrosit.
Perubahan bentuk
ini turut disertai
dengan ekpresi
gen kondrogenik yang meningkat, ini menandakan proses kondrogenesis telah berlaku. Sementara itu, ekspresi
gen kesteman memberi penunjuk bahawa proliferasi sel dapat diteruskan. Daripada tiga kumpulan kajian
nisbah ko-kultur
yang dikaji; ADSCs bersama
kondrosit (1:1 ratio) telah
menunjukkan kesan
yang lebih ketara dalam
menggalakkan proliferasi
sel dan kondrogenesis.
Kesimpulannya, ADSCs berpotensi menggantikan FBS sebagai
faktor pertumbuhan
bagi menyediakan jumlah kondrosit yang mencukupi untuk merawat kecederaan rawan pada masa hadapan. Kajian seterusnya di dalam
model in vivo perlu dijalankan
bagi menguji
keberkesanan teknik ko-kultur ini bagi
merawat kecederaan
rawan.
Kata kunci: Kondrosit;
penggunaan klinikal;
rawan; sel asal;
serum
REFERENCES
Afizah, H., Yang, Z., Hui, J.H.P., Ouyang, H.W. & Lee, E.H. 2007. A comparison between the chondrogenic
potential of human bone marrow stem cells (BMSCs) and adipose-derived
stem cells (ADSCs) taken from the same donors. Tissue Engineering
13(4): 659-666.
Anderer, U. & Libera, J. 2002. In vitro engineering of human autogenous
cartilage. Journal of Bone and Mineral Research 17(8):
1420-1429.
Bahney, C.S., Hsu, C.W., Yoo, J.U., West, J.L.
& Johnstone, B. 2011. A bioresponsive
hydrogel tuned to chondrogenesis of
human mesenchymal stem cells. FASEB Journal 25(5): 1486-1496.
Benya, P.D. & Shaffer, J.D. 1982. Dedifferentiated
chondrocytes reexpress the differentiated
collagen phenotype when cultured in agarose gels. Cell 30:
215-224.
Breinan, H.A., Minas, T., Hsu, H.P.,
Nehrer, S., Sledge, C.B. & Spector,
M. 1997. Effect of cultured autologous chondrocytes
on repair of chondral defects in a canine model. The
Journal of Bone and Joint Surgery: American Volume 79(10):
1439- 1451.
Brittberg, M. 1999. Autologous chondrocyte transplantation. Clinical Orthopaedic Related Research 367(Suppl):
S147-S155.
Brittberg, M., Anders, L., Anders, N.,
Claes, O., Olle,
I. & Lars, P. 1994. Treatment of deep cartilage defects in
the knee with autologous chondrocyte transplantation. The New
England Journal of Medicine 331(14): 889-895.
Brunner, D., Appl, H., Pfaller, W. & Gstraunthaler,
G. 2010. Serum-free cell culture: The serum-free
media interactive online database. ALTEX 27(1): 53-62.
Caplan, A.I. & Dennis, J.E. 2006. Mesenchymal stem cells as trophic mediators.
Journal of Cellular Biochemistry 98(5): 1076-1084.
Cawthorn, W.P., Scheller, E.L. & MacDougald, O.A. 2012. Trends
Endocrinology Metabolism 23(6): 270-277.
Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., Bridgett, L., Williams, S., Guillemin, F., Hill,
C.L., Laslett, L.L., Jones, G., Cicuttini, F., Osborne, R., Vos,
T., Buchbinder, R., Woolf, A. &
March, L. 2014. The global burden of hip and knee osteoarthritis:
Estimates from the Global Burden of Disease 2010 study. Annals
of the Rheumatic Diseases 73(7): 1323-1133.
DeLany, J.P., Floyd, Z.E., Zvonic, S., Smith,
A., Gravois, A., Reiners, E., Wu, X.,
Kilroy, G., Lefevre, M. & Gimble, J.M. 2005. Proteomic analysis of primary cultures of human adipose-derived
stem cells: Modulation by adipogenesis.
Molecular & Cellular Proteomics 6: 731-740.
Domm, C., Schunke, M., Christesen,
K. & Kurz, B. 2002. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture
under low oxygen tension. Osteoarthritis and Cartilage
10: 13-22.
Ferdinando, M. & Gaetana, A.T. 2007. Concise review: No breakthroughs for human mesenchymal and embryonic
stem cell culture: conditioned medium, feeder layer, or feeder-free;
Medium with fetal calf serum, human serum, or enriched plasma;
Serum-free, serum replacement non conditioned medium, or ad hoc
formula? All glittters is not gold! Stem Cells 25(7): 1603-1609.
Fransen, M., Bridgett, L., March, L., Hoy,
D., Penserga, E. & Brooks, P. 2011.
The epidemiology of osteoarthritis in Asia. International Journal of Rheumatic Diseases 2: 113-121.
Frenkel, S.R. & Di Cesar, P.E. 1999.
Degradation and repair of articular cartilage.
Frontiers in Bioscience 4: D671-685.
Fuss, M., Ehlers, E.M., Russlies, M., Rohwedel, J. & Behrens, P. 2000. Characteristics of human
chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study.
Annals of Anatomy 182: 303-310.
García-Olmo, D., García-Arranz, M., Herreros, D.,
Pascual, I., Peiro, C. & Rodríguez-Montes,
J.A. 2005. A phase I clinical trial
of the treatment of crohn’s fistula
by adipose mesenchymal stem cell transplantation. Diseases
of the Colon and Rectum 48(7): 1416-1423.
Goh, B.S., Che Omar, S.N., Ubaidah, M.A., Saim, L., Sulaiman, S. & Chua, K.H. 2017. Chondrogenesis of human adipose derived
stem cells for future microtia repair
using co-culture technique. Acta
Oto-Laryngologica 137: 432-441.
Gonzalez-Rey, E., Gonzalez, M.A., Varela, N., O’Valle,
F., Hernandez-Cortes, P., Rico, L. & Delgado, M. 2010. Human adipose-derived
mesenchymal stem cells reduce inflammatory and T cell responses
and induce regulatory T cells in vitro in rheumatoid arthritis.
Annals of the Rheumatic Diseases 69(1): 241-248.
Grottkau, B.E. & Lin, Y. 2013.
Osteogenesis of adipose-derived stem cells.
Bone Research 1(2): 133-145.
Hamid,
A.A., Idrus, R.B.H., Saim,
A.B., Sathappan, S. & Chua, K.H.
2012. Characterization of human adipose-derived stem cells and expression
of chondrogenic genes during induction
of cartilage differentiation. Clinics 67(2): 99-106.
Hui,
C.K., Kamarul, W., Wan, Z., Chin, S.S.,
Abu, A. & Abdul, S. 2012. Human serum promotes the proliferation
but not the stemness genes expression of human adipose-derived stem cells.
Biotechnology and Bioprocess Engineering 17: 1306-1313.
Kim,
S.J., Cho, H.H., Kim, Y.J., Seo, S.Y.,
Kim, H.N., Lee, B.J., Kim, H.J., Chung, S.J. & Jung, S.J.
2005. Human
adipose stromal cells expanded in human serum promote engraftment
of human peripheral blood hematopoietic stem cells in NOD/SCID
mice. Biochemical and Biophysical Research Communications 329:
25-31.
Kratchmarova,
I., Kalume, D.E., Blagoev,
B., Scherer, P.E., Podtelejnikov, A.V.
& Molina, H.A. 2002. A proteomic approach for identification
of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Molecular & Cellular
Proteomics 1: 213-222.
Liau, L.L.,
Makpol, S., Azurah,
A.G.N. & Chua, K.H. 2018. Human adipose-derived mesenchymal
stem cells promote recovery of injured HepG2 cell line and show
sign of early hepatogenic differentiation. Cytotechnology
70(4): 1221- 1233.
Mohamad
Buang, M.L., Seng, H.K., Chung, L.H.,
Saim, A.B. & Idrus, R.B.H. 2012.
In vitro generation of functional insulin-producing
cells from lipoaspirated human adipose
tissue-derived stem cells. Archives of Medical Research
43(1): 83-88.
Nejadnik,
H., Hui, J.H., Feng Choong, E.P., Tai,
B.C. & Lee, E.H. 2010. Autologous bone marrow-derived
mesenchymal stem cells versus autologous chondrocyte implantation.
The American Journal of Sports Medicine 38(6): 1110-1116.
Riordan,
N.H., Ichim, T.E., Min, W.P., Wang,
H., Solano, F., Lara, F., Alfaro, M., Rodriguez, J.P., Patel,
A.N., Murphy, M.P., Lee, R.R. & Minev, B. 2009. Non-expanded
adipose stromal vascular fraction cell therapy for multiple sclerosis.
Journal of Translational Medicine 7: 29. https://doi.org/10.1186/1479-
5876-7-29.
Salah,
S.A., Ng, A.M.H., Aminuddin, S., Ho,
C.K.C., Ismail, S., Rajesh, S., Mohd
Reuzmaazran, Y., Zulkifli,
M.Z. & Ruszymah, H.I. 2013. Brief
communication human adipose tissue derived stem cells as a source
of smooth muscle cells in the regeneration of muscular layer of
urinary bladder wall. Malays.
Journal of Medical Science 20(4): 80-87.
Schnabel,
M., Marlovits, S., Eckhoff,
G., Fichtel, I., Gotzen,
L., Vecsei, V. & Schlegel, J. 2002.
Dedifferentiation-associated changes in morphology and gene expression
in primary human articular chondrocytes in cell culture. Osteoarthritis
and Cartilage 10: 62-70.
Schulze-Tanzil, G. 2009. Activation and
dedifferentiation of chondrocytes: Implications in cartilage injury
and repair. Annals of Anatomy 191(4): 325-338.
Shahdadfar, A.,
Frønsdal, K., Haug,
T., Reinholt, F.P. & Brinchmann,
J.E. 2005.
In vitro expansion of
human mesenchymal stem cells: Choice of serum is a determinant
of cell proliferation, differentiation, gene expression, and transcriptome
stability. Stem Cells 9: 1357-1366.
Stewart,
M.C., Saunders, K.M., Burton-Wurster,
N. & Macleod, J.N. 2000. Phenotypicstability
of articular chondrocytes in vitro: The effects of culture
models, bone morphogenetic protein 2, and serum supplementation.
Journal of Bone and Mineral Research 15: 166-174.
Tapp,
H., Hanley, E.N., Patt, J.C. & Gruber,
H.E. 2009. Adipose-derived
stem cells: Characterization and current application in orthopaedic tissue repair. Experimental Biology and Medicine
234: 1-9.
Turner,
P.A., Gurumurthy, B., Bailey, J.L.,
Elks, C.M. & Janorkar, A.V. 2017. Adipogenic differentiation
of human adipose-derived stem cells grown as spheroids.
Process Biochemistry 59: 312-320.
Valk, J.
Van Der., Brunner, D., Smet, K.D., Svenningsen, Å.F., Honegger, P., Knudsen, L.E., Lindi, T., Noraberg, J., Price,
A., Scarino, M.L. & Gstraunthaler,
G. 2010. Optimization of chemically defined
cell culture media - Replacing fetal bovine serum in mammalian
in vitro methods. Toxicology in Vitro 24(4):
1053-1063.
Valk,
J. Van Der., Mellor, D., Brands, R., Fischer, R., Gruber, F. &
Gstraunthaler, G. 2004. The humane collection of fetal bovine serum and possibilities for
serum-free cell and tissue culture. Toxicology in Vitro
11: 1-12.
Wang,
M., Yuan, Z., Ma, N., Hao, C., Guo,
W., Zou, G. & Guo, Q. 2017. Advances and prospects in stem cells for cartilage regeneration.
Stem Cells International 2017: 4130607.
Waters,
H.A., Geffre, C.P., Gonzales, D.A.,
Grana, W.A. & Szivek, J.A. 2013. Co-culture of
adipose derived stem cells and chondrocytes with surface modifying
proteins induces enhanced cartilage tissue formation. Journal
of Investigative Surgery 26: 118-126.
Wessman, S.J.
& Levings, R.L. 1999. Benefits and risks due
to animal serum used in cell culture production. Developments in Biologicals Standardization 99: 3-8.
Woolf,
A.D. 2015. Global burden of osteoarthritis and
musculoskeletal diseases. BMC Musculoskeletal Disorders
16(Suppl 1): S3. doi.10.1186/1471-2474-16-S1-S3.
Yang,
Y.H., Lee, A.J. & Barabino, G.A.
2012. Coculture-driven mesenchymal stem cell-differentiated articular
chondrocyte-like cells support neocartilage
development. Stem Cells Translational Medicine 1: 843-854.
Zhao,
Y., Jiang, H., Liu, X.W., Chen, J.T., Xiang, L.B. & Zhou,
D.P. 2015. Neurogenic differentiation from adipose-derived stem cells and application
for autologous transplantation in spinal cord injury. Cell
and Tissue Banking 16(3): 335-342.
Zhong, J.,
Guo, B., Xie,
J., Deng, S., Fu, N., Lin, S., Li, G., Lin, Y. & Cai,
X. 2016. Crosstalk between adipose-derived stem cells and chondrocytes:
When growth factors matter. Bone Research 4: 15036.
Zuk, P.A., Zhu, M., Ashjian,
P., De Ugarte, D.A., Huang, J.I., Mizuno,
H., Alfonso, Z.C., Fraser, J.K., Benhaim,
P. & Hedrick, M.H. 2002. Human adipose tissue is a source
of multipotent stem cells. Molecular Biology
of the Cell 12: 4279-4295.
*Corresponding author; email: adilahamid@gmail.com