Sains Malaysiana 47(10)(2018): 2369–2379

http://dx.doi.org/10.17576/jsm-2018-4710-13

 

Chondrogenesis of Adipose-Derived Stem Cells with Chondrocytes in Low Serum towards Clinical Application

(Sel Asal Kondrogenesis Terbitan Adipos dengan Kondrosit dalam Serum Rendah untuk Aplikasi Klinikal)

 

ADILA A HAMID1*, SATISH VAARMAN JEYABALAN1, ALEZA OMAR1, NIK ZATTIL HANAN MOHD YASIN1, WONG TZENG LIN1, LIAU LING LING1, NUR AZURAH ABDUL GHANI1, ANEEZA KHAIRIYAH WAN HAMIZAN1 & CHUA KIEN HUI1

 

1Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Otorhinolaryngology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 22 March 2018/Accepted: 5 June 2018

 

 

ABSTRACT

Currently, fetal bovine serum (FBS) have been widely use in culture media to promote human cell proliferation. However, the usage of FBS for cell therapy in clinical application was associated with the risk of viral and prion transmission as well as immune rejection. To provide an option for this risk, this study was conducted to determine the effect of adipose derived stem cells (ADSCs) co-culture with chondrocyte in promoting cell proliferation and chondrogenesis toward FBS free condition. ADSCs co-cultured with chondrocyte at the ratio of 1:1, 2:1 and 1:2 were tested. Cell morphology changes, cell proliferation and gene expression level of stemness (Oct4, FGF-4, Nanog) and chondrogenic (Collagen Type II, ACP) were assessed. The results showed ADSCs in all co-culture groups changed morphology from fibroblastic spindle to polygonal shape which resembled chondrocytes. The morphological changes were accompanied with increased expression of chondrogenic genes; denoted chondrogenesis process. While maintaining expression of stemness genes indicated continuation of cell proliferation. From the three co-culture groups tested; ADSCs and chondrocytes (1:1 ratio) have been shown to exert better effects in promoting cell proliferation and chondrogenesis. In conclusion, ADSCs could replace FBS to grow sufficient number of chondrogenic cells to repair cartilage injury in the near future. Further in vivo study should be performed to test the effectiveness of this co-culture technique in cartilage injury repair.

 

Keywords: Cartilage; chondrocyte; clinical application; serum; stem cell

 

ABSTRAK

Pada masa kini, serum fetus bovin (FBS) telah digunakan secara meluas di dalam media kultur sebagai faktor penggalak pertumbuhan sel. Namun begitu, penggunaan FBS untuk terapi sel secara klinikal dikaitkan dengan risiko transmisi virus dan prion serta tolakan imun. Bagi menangani risiko ini, kajian ini dijalankan bagi menentukan kesan ko-kultur sel stem adipos (ADSCs) dan kondrosit terhadap proliferasi sel dan kondrogenesis kearah kondisi pengkulturan bebas FBS. ADSCs dikultur bersama kondrosit dengan nisbah 1:1, 1:2 dan 2:1 telah diuji. Perubahan morfologi sel, proliferasi sel dan ekspresi gen kesteman (Oct4, FGF-4, Nanog) dan gen kondrogenik (kolagen jenis II dan ACP) telah dinilai. Keputusan kajian mendapati ADSCs dalam semua kumpulan ko-kultur berubah morfologi daripada bentuk fibroblas memanjang kepada bentuk poligon yang menyerupai kondrosit. Perubahan bentuk ini turut disertai dengan ekpresi gen kondrogenik yang meningkat, ini menandakan proses kondrogenesis telah berlaku. Sementara itu, ekspresi gen kesteman memberi penunjuk bahawa proliferasi sel dapat diteruskan. Daripada tiga kumpulan kajian nisbah ko-kultur yang dikaji; ADSCs bersama kondrosit (1:1 ratio) telah menunjukkan kesan yang lebih ketara dalam menggalakkan proliferasi sel dan kondrogenesis. Kesimpulannya, ADSCs berpotensi menggantikan FBS sebagai faktor pertumbuhan bagi menyediakan jumlah kondrosit yang mencukupi untuk merawat kecederaan rawan pada masa hadapan. Kajian seterusnya di dalam model in vivo perlu dijalankan bagi menguji keberkesanan teknik ko-kultur ini bagi merawat kecederaan rawan.

 

Kata kunci: Kondrosit; penggunaan klinikal; rawan; sel asal; serum

REFERENCES

Afizah, H., Yang, Z., Hui, J.H.P., Ouyang, H.W. & Lee, E.H. 2007. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Engineering 13(4): 659-666.

Anderer, U. & Libera, J. 2002. In vitro engineering of human autogenous cartilage. Journal of Bone and Mineral Research 17(8): 1420-1429.

Bahney, C.S., Hsu, C.W., Yoo, J.U., West, J.L. & Johnstone, B. 2011. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB Journal 25(5): 1486-1496.

Benya, P.D. & Shaffer, J.D. 1982. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215-224.

Breinan, H.A., Minas, T., Hsu, H.P., Nehrer, S., Sledge, C.B. & Spector, M. 1997. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. The Journal of Bone and Joint Surgery: American Volume 79(10): 1439- 1451.

Brittberg, M. 1999. Autologous chondrocyte transplantation. Clinical Orthopaedic Related Research 367(Suppl): S147-S155.

Brittberg, M., Anders, L., Anders, N., Claes, O., Olle, I. & Lars, P. 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine 331(14): 889-895.

Brunner, D., Appl, H., Pfaller, W. & Gstraunthaler, G. 2010. Serum-free cell culture: The serum-free media interactive online database. ALTEX 27(1): 53-62.

Caplan, A.I. & Dennis, J.E. 2006. Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry 98(5): 1076-1084.

Cawthorn, W.P., Scheller, E.L. & MacDougald, O.A. 2012. Trends Endocrinology Metabolism 23(6): 270-277.

Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., Bridgett, L., Williams, S., Guillemin, F., Hill, C.L., Laslett, L.L., Jones, G., Cicuttini, F., Osborne, R., Vos, T., Buchbinder, R., Woolf, A. & March, L. 2014. The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study. Annals of the Rheumatic Diseases 73(7): 1323-1133.

DeLany, J.P., Floyd, Z.E., Zvonic, S., Smith, A., Gravois, A., Reiners, E., Wu, X., Kilroy, G., Lefevre, M. & Gimble, J.M. 2005. Proteomic analysis of primary cultures of human adipose-derived stem cells: Modulation by adipogenesis. Molecular & Cellular Proteomics 6: 731-740.

Domm, C., Schunke, M., Christesen, K. & Kurz, B. 2002. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis and Cartilage 10: 13-22.

Ferdinando, M. & Gaetana, A.T. 2007. Concise review: No breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; Medium with fetal calf serum, human serum, or enriched plasma; Serum-free, serum replacement non conditioned medium, or ad hoc formula? All glittters is not gold! Stem Cells 25(7): 1603-1609.

Fransen, M., Bridgett, L., March, L., Hoy, D., Penserga, E. & Brooks, P. 2011. The epidemiology of osteoarthritis in Asia. International  Journal of  Rheumatic Diseases 2: 113-121.

Frenkel, S.R. & Di Cesar, P.E. 1999. Degradation and repair of articular cartilage. Frontiers in Bioscience 4: D671-685.

Fuss, M., Ehlers, E.M., Russlies, M., Rohwedel, J. & Behrens, P. 2000. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study. Annals of Anatomy 182: 303-310.

García-Olmo, D., García-Arranz, M., Herreros, D., Pascual, I., Peiro, C. & Rodríguez-Montes, J.A. 2005. A phase I clinical trial of the treatment of crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon and Rectum 48(7): 1416-1423.

Goh, B.S., Che Omar, S.N., Ubaidah, M.A., Saim, L., Sulaiman, S. & Chua, K.H. 2017. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique. Acta Oto-Laryngologica 137: 432-441.

Gonzalez-Rey, E., Gonzalez, M.A., Varela, N., O’Valle, F., Hernandez-Cortes, P., Rico, L. & Delgado, M. 2010. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Annals of the Rheumatic Diseases 69(1): 241-248.

Grottkau, B.E. & Lin, Y. 2013. Osteogenesis of adipose-derived stem cells. Bone Research 1(2): 133-145.

Hamid, A.A., Idrus, R.B.H., Saim, A.B., Sathappan, S. & Chua, K.H. 2012. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics 67(2): 99-106.

Hui, C.K., Kamarul, W., Wan, Z., Chin, S.S., Abu, A. & Abdul, S. 2012. Human serum promotes the proliferation but not the stemness genes expression of human adipose-derived stem cells. Biotechnology and Bioprocess Engineering 17: 1306-1313.

Kim, S.J., Cho, H.H., Kim, Y.J., Seo, S.Y., Kim, H.N., Lee, B.J., Kim, H.J., Chung, S.J. & Jung, S.J. 2005. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochemical and Biophysical Research Communications 329: 25-31.

Kratchmarova, I., Kalume, D.E., Blagoev, B., Scherer, P.E., Podtelejnikov, A.V. & Molina, H.A. 2002. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Molecular & Cellular Proteomics 1: 213-222.

Liau, L.L., Makpol, S., Azurah, A.G.N. & Chua, K.H. 2018. Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation. Cytotechnology 70(4): 1221- 1233.

Mohamad Buang, M.L., Seng, H.K., Chung, L.H., Saim, A.B. & Idrus, R.B.H. 2012. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells. Archives of Medical Research 43(1): 83-88.

Nejadnik, H., Hui, J.H., Feng Choong, E.P., Tai, B.C. & Lee, E.H. 2010. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation. The American Journal of Sports Medicine 38(6): 1110-1116.

Riordan, N.H., Ichim, T.E., Min, W.P., Wang, H., Solano, F., Lara, F., Alfaro, M., Rodriguez, J.P., Patel, A.N., Murphy, M.P., Lee, R.R. & Minev, B. 2009. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine 7: 29. https://doi.org/10.1186/1479- 5876-7-29.

Salah, S.A., Ng, A.M.H., Aminuddin, S., Ho, C.K.C., Ismail, S., Rajesh, S., Mohd Reuzmaazran, Y., Zulkifli, M.Z. & Ruszymah, H.I. 2013. Brief communication human adipose tissue derived stem cells as a source of smooth muscle cells in the regeneration of muscular layer of urinary bladder wall. Malays. Journal of Medical Science 20(4): 80-87.

Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vecsei, V. & Schlegel, J. 2002. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis and Cartilage 10: 62-70.

Schulze-Tanzil, G. 2009. Activation and dedifferentiation of chondrocytes: Implications in cartilage injury and repair. Annals of Anatomy 191(4): 325-338.

Shahdadfar, A., Frønsdal, K., Haug, T., Reinholt, F.P. & Brinchmann, J.E. 2005. In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 9: 1357-1366.

Stewart, M.C., Saunders, K.M., Burton-Wurster, N. & Macleod, J.N. 2000. Phenotypicstability of articular chondrocytes in vitro: The effects of culture models, bone morphogenetic protein 2, and serum supplementation. Journal of Bone and Mineral Research 15: 166-174.

Tapp, H., Hanley, E.N., Patt, J.C. & Gruber, H.E. 2009. Adipose-derived stem cells: Characterization and current application in orthopaedic tissue repair. Experimental Biology and Medicine 234: 1-9.

Turner, P.A., Gurumurthy, B., Bailey, J.L., Elks, C.M. & Janorkar, A.V. 2017. Adipogenic differentiation of human adipose-derived stem cells grown as spheroids. Process Biochemistry 59: 312-320.

Valk, J. Van Der., Brunner, D., Smet, K.D., Svenningsen, Å.F., Honegger, P., Knudsen, L.E., Lindi, T., Noraberg, J., Price, A., Scarino, M.L. & Gstraunthaler, G. 2010. Optimization of chemically defined cell culture media - Replacing fetal bovine serum in mammalian in vitro methods. Toxicology in Vitro 24(4): 1053-1063.

Valk, J. Van Der., Mellor, D., Brands, R., Fischer, R., Gruber, F. & Gstraunthaler, G. 2004. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicology in Vitro 11: 1-12.

Wang, M., Yuan, Z., Ma, N., Hao, C., Guo, W., Zou, G. & Guo, Q. 2017. Advances and prospects in stem cells for cartilage regeneration. Stem Cells International 2017: 4130607.

Waters, H.A., Geffre, C.P., Gonzales, D.A., Grana, W.A. & Szivek, J.A. 2013. Co-culture of adipose derived stem cells and chondrocytes with surface modifying proteins induces enhanced cartilage tissue formation. Journal of Investigative Surgery 26: 118-126.

Wessman, S.J. & Levings, R.L. 1999. Benefits and risks due to animal serum used in cell culture production. Developments in Biologicals Standardization 99: 3-8.

Woolf, A.D. 2015. Global burden of osteoarthritis and musculoskeletal diseases. BMC Musculoskeletal Disorders 16(Suppl 1): S3. doi.10.1186/1471-2474-16-S1-S3.

Yang, Y.H., Lee, A.J. & Barabino, G.A. 2012. Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem Cells Translational Medicine 1: 843-854.

Zhao, Y., Jiang, H., Liu, X.W., Chen, J.T., Xiang, L.B. & Zhou, D.P. 2015. Neurogenic differentiation from adipose-derived stem cells and application for autologous transplantation in spinal cord injury. Cell and Tissue Banking 16(3): 335-342.

Zhong, J., Guo, B., Xie, J., Deng, S., Fu, N., Lin, S., Li, G., Lin, Y. & Cai, X. 2016. Crosstalk between adipose-derived stem cells and chondrocytes: When growth factors matter. Bone Research 4: 15036.

Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. & Hedrick, M.H. 2002. Human adipose tissue is a source of multipotent stem cells.  Molecular  Biology of the Cell 12: 4279-4295.

 

 

*Corresponding author; email: adilahamid@gmail.com

 

 

 

 

 

previous