Sains Malaysiana 47(1)(2018): 27–34
http://dx.doi.org/10.17576/jsm-2018-4701-04
Biotechnology:
A Powerful Tool for the Removal of Cadmium from Aquatic Systems
(Bioteknologi: Alat yang Ampuh untuk Penyingkiran
Kadmium daripada
Sistem Akuatik)
RABEEA MUNAWAR1, EHSAN ULLAH MUGHAL1*, AMINA SADIQ2, HAMID MUKHTAR3, MUHAMMAD NAVEED ZAFAR4, MUHAMMAD WASEEM MUMTAZ1, ISHTIAQ AHMED5, MUHAMMAD ZUBAIR1, BILAL AHMAD KHAN6, JAMSHAID ASHRAF1, ZOFISHAN YOUSAF1 & NOREED AKBAR1
1Department of
Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
2Department of
Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
3Institute of
Industrial Biotechnology, GC University, Lahore 54000, Pakistan
4Department of
Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
5Karlsruhe
Institute of Technology (KIT), Institute for Biological
Interfaces (IBG-1), Hermann-von-Helmholtz-Platz,
D-76344 Eggenstein-Leopoldshafen, Germany
6Department of
Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
Received: 16
February 2017/Accepted: 15 June 2017
ABSTRACT
The prime objective of the
present research work was to evaluate the efficiency of bio-machine for the
removal of Cadmium (Cd) from aquatic systems. Aspergillus niger fungus was used as
bio-machine to remove Cd from aquatic systems. Twenty three different strains
(IIB-1 to IIB-23) were isolated from industrial effluents and the Langmuir and Freundlich models were applied to the best Cadmium removal
strain IIB-23 in order to obtain the adsorption parameters. Different
parameters such as pH, temperature, contact time, initial metal concentratio, and biomass dosage on the biosorption of Cd were studied. The percent removal of Cd initially increased with an
increase in pH ranging from 5.5-6.5 and then decreased by increasing pH from
7.0-7.5. An optimized pH used for Cd removal from aquatic systems was found to
be 6.5. Additionally, an optimum amount of biomass was 1.33 g for the maximum
removal of Cd from the aqueous solutions with initial metal concentration of 75
mg/L. The results obtained thus indicated that Langmuir model is the best
suited for the removal of Cd from aquatic systems.
Keywords: Adsorption; Aspergillus niger; Bio-machine; Biosorption; Biotechnology; Cadmium
ABSTRAK
Objektif utama penyelidikan
ini adalah
untuk menilai keberkesanan
mesin biologi
dalam menyingkirkan kadmium (Cd) daripada sistem akuatik. Kulat
Aspergillus niger
digunakan sebagai
mesin biologi untuk penyingkiran Cd daripada sistem akuatik. Dua puluh tiga
strain berbeza (IIB-1 IIB-23) telah
dipencilkan daripada
efluen industri dan model Langmuir dan Freundlich digunakan untuk penyingkiran kadmium terbaik strain IIB-23
untuk mendapatkan parameter
penjerapan. Parameter berbeza
seperti pH, suhu,
masa hubungan, kepekatan logam pemula dan
dos biojisim pada
bioserapan CD telah dikaji. Peratus penyingkiran Cd pada
mulanya meningkat
dengan peningkatan dalam pH antara 5.5-6.5 dan kemudian menurun
dengan peningkatan
pH daripada 7.0-7.5. PH optimum
yang digunakan untuk penyingkiran Cd daripada sistem akuatik adalah 6.5. Di samping
itu, sejumlah biojisim
optimum adalah 1.33 g untuk
penyingkiran maksimum
Cd daripada larutan berair dengan kepekatan
logam pemula
75 mg/L. Keputusan yang diperoleh menunjukkan bahawa model Langmuir
adalah yang terbaik
untuk penyingkiran Cd daripada sistem akuatik.
Kata kunci: Aspergillus niger; bioserapan;
bioteknologi; kadmium;
mesin biologi; penjerapan
REFERENCES
Ahluwalia, S.S. & Goyal, D. 2007. Microbial and plant derived biomass for removal of heavy metals from
wastewater. Bioresource Technology 98:
2243-2257.
Aksu, Z., Egretli, G. & Kutsal, T.
1999. A comparative study for the biosorption characteristics of chromium (VI) on ca-alginate, agarose and immobilized c
vulgaris in a continuous packed bed column. Journal of Environmental
Science & Health Part A 34: 295-316.
Borcherding, N.
2014. Noncanonical Wnt signaling in breast cancer initiation
and progression. Thesis. University of Iowa
(Unpublished).
Bardy,
G.H., Lee, K.L., Mark, D.B., Poole, J.E., Packer, D.L., Boineau,
R., Domanski, M., Troutman, C., Anderson, J. &
Johnson, G. 2005. Amiodarone or an implantable
cardioverter-defibrillator for congestive heart failure. New England
Journal of Medicine 352: 225-237.
Chopra, A. &
Pathak, C. 2010. Biosorption technology for removal of metallic pollutants-an overview. Journal
of Applied & Natural Science 2: 318-329.
Colditz,
G.A., Hankinson, S.E., Hunter, D.J., Willett, W.C., Manson, J.E., Stampfer, M.J., Hennekens, C., Rosner, B. & Speizer, F.E.
1995. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. New England
Journal of Medicine 332: 1589-1593.
Doyle, R.G.
1963. The consolidation characteristics of peat as determined from the
one-dimensional consolidation test. Thesis. University
of British Columbia (Unpublished).
Finley,
R.L., Collignon, P., Larsson, D.J., McEwen, S.A., Li,
X.Z., Gaze, W.H., Reid-Smith, R., Timinouni, M.,
Graham, D.W. & Topp, E. 2013. The scourge of
antibiotic resistance: The important role of the environment. Clinical
Infectious Diseases 57: 704-710.
Göksungur,
Y., Üren, S. & Güvenç,
U. 2005. Biosorption of cadmium and lead ions by ethanol
treated waste baker’s yeast biomass. Bioresource Technology 96: 103-109.
Goyal,
N., Jain, S. & Banerjee, U. 2003. Comparative studies
on the microbial adsorption of heavy metals. Advances in
Environmental Research 7: 311-319.
Joo,
J.H., Hassan, S.H. & Oh, S.E. 2010. Comparative
study of biosorption of Zn 2+ by Pseudomonas
aeruginosa and Bacillus cereus. International Biodeterioration & Biodegradation 64: 734-741.
Kobya,
M., Demirbas, E., Senturk,
E. & Ince, M. 2005. Adsorption of
heavy metal ions from aqueous solutions by activated carbon prepared from
apricot stone. Bioresource Technology 96:
1518-1521.
Moses,
J.W., Leon, M.B., Popma, J.J., Fitzgerald, P.J.,
Holmes, D.R., O’Shaughnessy, C., Caputo, R.P., Kereiakes,
D.J., Williams, D.O. & Teirstein, P.S. 2003. Sirolimus-eluting
stents versus standard stents in patients with stenosis in a native coronary
artery. New England Journal of Medicine 349: 1315-1323.
Martín-González,
A., Díaz, S., Borniquel,
S., Gallego, A. & Gutiérrez, J.C. 2006. Cytotoxicity
and bioaccumulation of heavy metals by ciliated protozoa isolated from urban
wastewater treatment plants. Research in Microbiology 157: 108-118.
Nagajyoti,
P., Lee, K. & Sreekanth, T. 2010. Heavy metals,
occurrence and toxicity for plants: A review. Environmental Chemistry
Letters 8: 199-216.
Newman,
A.B., Walter, S., Lunetta, K.L., Garcia, M.E., Slagboom, P.E., Christensen, K., Arnold, A.M., Aspelund, T., Aulchenko, Y.S.
& Benjamin, E.J. 2010. A meta-analysis of four genome-wide
association studies of survival to age 90 years or older: The cohorts for heart
and aging research in genomic epidemiology consortium. The Journals of
Gerontology Series A: Biological Sciences and Medical Sciences 65: 478-487.
Ng, A.K.L.,
Zhang, H., Tan, K., Li, Z., Liu, J.H., Chan, P.K.S., Li, S.M., Chan, W.Y., Au,
S.W.N., Joachimiak, A., Walz,
T., Wang, J.H. & Shaw, P.C. 2008. Structure of the influenza virus A H5N1
nucleoprotein: Implications for RNA binding, oligomerization, and vaccine
design. The FASEB Journal 22(10): 3638-3647.
Nourbakhsh,
M., Sag, Y., Özer, D., Aksu,
Z., Kutsal, T. & Caglar,
A. 1994. A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters. Process
Biochemistry 28: 1-5.
Park,
J.K., Jin, Y.B. & Chang, H.N. 1999. Reusable biosorbents in capsules from Zoogloea ramigera cells for cadmium removal. Biotechnology
and Bioengineering 63: 116-121.
Pittman,
J.K., Dean, A.P. & Osundeko, O. 2011. The potential of sustainable algal biofuel production using
wastewater resources. Bioresource Technology 102: 17-25.
Robbins, C.R.
2012. Chemical composition of different hair types. In Chemical and Physical Behavior of Human Hair. New
York: Springer. pp. 105-176.
Sawalha,
M.F., Peralta-Videa, J.R., Romero-González, J. & Gardea-Torresdey, J.L. 2006. Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass:
Thermodynamic and isotherm studies. Journal of Colloid and Interface Science 300: 100-104.
Villaescusa,
I., Fiol, N., Poch, J.,
Bianchi, A. & Bazzicalupi, C. 2011. Mechanism of
removal by vegetable wastes: The contribution of π-π interactions,
hydrogen bonding and hydrophobic effect. Desalination 270: 135-142.
Volesky,
B. & May-Phillips, H. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Applied
Microbiology and Biotechnology 42: 797-806.
Wilhelmi,
B. & Duncan, J. 1995. Metal recovery from Saccharomyces
cerevisiae biosorption columns. Biotechnology
Letters 17: 1007-1012.
Xiangliang,
P., Jianlong, W. & Daoyong,
Z. 2005. Biosorption of Pb (II) by Pleurotus ostreatusimmobilized
in calcium alginate gel. Process Biochemistry 40: 2799-2803.
Yin,
P., Yu, Q., Jin, B. & Ling, Z. 1999. Biosorption removal of cadmium from aqueous solution by
using pretreated fungal biomass cultured from starch wastewater. Water
Research 33: 1960-1963.
Zhou,
J.L. & Kiff, R.J. 1991. The uptake of
copper from aqueous solution by immobilized fungal biomass. Journal of
Chemical Technology and Biotechnology 52: 317-330.
*Corresponding author; email: ehsan.ullah@uog.edu.pk
|