Sains Malaysiana 47(1)(2018): 27–34

http://dx.doi.org/10.17576/jsm-2018-4701-04

 

Biotechnology: A Powerful Tool for the Removal of Cadmium from Aquatic Systems

(Bioteknologi: Alat yang Ampuh untuk Penyingkiran Kadmium daripada Sistem Akuatik)

 

RABEEA MUNAWAR1, EHSAN ULLAH MUGHAL1*, AMINA SADIQ2, HAMID MUKHTAR3, MUHAMMAD NAVEED ZAFAR4, MUHAMMAD WASEEM MUMTAZ1, ISHTIAQ AHMED5, MUHAMMAD ZUBAIR1, BILAL AHMAD KHAN6, JAMSHAID ASHRAF1, ZOFISHAN YOUSAF1 & NOREED AKBAR1

 

1Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan

 

2Department of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan

 

3Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan

 

4Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan

 

5Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany

 

6Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan

 

Received: 16 February 2017/Accepted: 15 June 2017

 

ABSTRACT

The prime objective of the present research work was to evaluate the efficiency of bio-machine for the removal of Cadmium (Cd) from aquatic systems. Aspergillus niger fungus was used as bio-machine to remove Cd from aquatic systems. Twenty three different strains (IIB-1 to IIB-23) were isolated from industrial effluents and the Langmuir and Freundlich models were applied to the best Cadmium removal strain IIB-23 in order to obtain the adsorption parameters. Different parameters such as pH, temperature, contact time, initial metal concentratio, and biomass dosage on the biosorption of Cd were studied. The percent removal of Cd initially increased with an increase in pH ranging from 5.5-6.5 and then decreased by increasing pH from 7.0-7.5. An optimized pH used for Cd removal from aquatic systems was found to be 6.5. Additionally, an optimum amount of biomass was 1.33 g for the maximum removal of Cd from the aqueous solutions with initial metal concentration of 75 mg/L. The results obtained thus indicated that Langmuir model is the best suited for the removal of Cd from aquatic systems.

 

Keywords: Adsorption; Aspergillus niger; Bio-machine; Biosorption; Biotechnology; Cadmium

 

ABSTRAK

Objektif utama penyelidikan ini adalah untuk menilai keberkesanan mesin biologi dalam menyingkirkan kadmium (Cd) daripada sistem akuatik. Kulat Aspergillus niger digunakan sebagai mesin biologi untuk penyingkiran Cd daripada sistem akuatik. Dua puluh tiga strain berbeza (IIB-1 IIB-23) telah dipencilkan daripada efluen industri dan model Langmuir dan Freundlich digunakan untuk penyingkiran kadmium terbaik strain IIB-23 untuk mendapatkan parameter penjerapan. Parameter berbeza seperti pH, suhu, masa hubungan, kepekatan logam pemula dan dos biojisim pada bioserapan CD telah dikaji. Peratus penyingkiran Cd pada mulanya meningkat dengan peningkatan dalam pH antara 5.5-6.5 dan kemudian menurun dengan peningkatan pH daripada 7.0-7.5. PH optimum yang digunakan untuk penyingkiran Cd daripada sistem akuatik adalah 6.5. Di samping itu, sejumlah biojisim optimum adalah 1.33 g untuk penyingkiran maksimum Cd daripada larutan berair dengan kepekatan logam pemula 75 mg/L. Keputusan yang diperoleh menunjukkan bahawa model Langmuir adalah yang terbaik untuk penyingkiran Cd daripada sistem akuatik.

Kata kunci: Aspergillus niger; bioserapan; bioteknologi; kadmium; mesin biologi; penjerapan

REFERENCES

Ahluwalia, S.S. & Goyal, D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology 98: 2243-2257.

Aksu, Z., Egretli, G. & Kutsal, T. 1999. A comparative study for the biosorption characteristics of chromium (VI) on ca-alginate, agarose and immobilized c vulgaris in a continuous packed bed column. Journal of Environmental Science & Health Part A 34: 295-316.

Borcherding, N. 2014. Noncanonical Wnt signaling in breast cancer initiation and progression. Thesis. University of Iowa (Unpublished).

Bardy, G.H., Lee, K.L., Mark, D.B., Poole, J.E., Packer, D.L., Boineau, R., Domanski, M., Troutman, C., Anderson, J. & Johnson, G. 2005. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. New England Journal of Medicine 352: 225-237.

Chopra, A. & Pathak, C. 2010. Biosorption technology for removal of metallic pollutants-an overview. Journal of Applied & Natural Science 2: 318-329.

Colditz, G.A., Hankinson, S.E., Hunter, D.J., Willett, W.C., Manson, J.E., Stampfer, M.J., Hennekens, C., Rosner, B. & Speizer, F.E. 1995. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. New England Journal of Medicine 332: 1589-1593.

Doyle, R.G. 1963. The consolidation characteristics of peat as determined from the one-dimensional consolidation test. Thesis. University of British Columbia (Unpublished).

Finley, R.L., Collignon, P., Larsson, D.J., McEwen, S.A., Li, X.Z., Gaze, W.H., Reid-Smith, R., Timinouni, M., Graham, D.W. & Topp, E. 2013. The scourge of antibiotic resistance: The important role of the environment. Clinical Infectious Diseases 57: 704-710.

Göksungur, Y., Üren, S. & Güvenç, U. 2005. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology 96: 103-109.

Goyal, N., Jain, S. & Banerjee, U. 2003. Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research 7: 311-319.

Joo, J.H., Hassan, S.H. & Oh, S.E. 2010. Comparative study of biosorption of Zn 2+ by Pseudomonas aeruginosa and Bacillus cereus. International Biodeterioration & Biodegradation 64: 734-741.

Kobya, M., Demirbas, E., Senturk, E. & Ince, M. 2005. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology 96: 1518-1521.

Moses, J.W., Leon, M.B., Popma, J.J., Fitzgerald, P.J., Holmes, D.R., O’Shaughnessy, C., Caputo, R.P., Kereiakes, D.J., Williams, D.O. & Teirstein, P.S. 2003. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New England Journal of Medicine 349: 1315-1323.

Martín-González, A., Díaz, S., Borniquel, S., Gallego, A. & Gutiérrez, J.C. 2006. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Research in Microbiology 157: 108-118.

Nagajyoti, P., Lee, K. & Sreekanth, T. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters 8: 199-216.

Newman, A.B., Walter, S., Lunetta, K.L., Garcia, M.E., Slagboom, P.E., Christensen, K., Arnold, A.M., Aspelund, T., Aulchenko, Y.S. & Benjamin, E.J. 2010. A meta-analysis of four genome-wide association studies of survival to age 90 years or older: The cohorts for heart and aging research in genomic epidemiology consortium. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 65: 478-487.

Ng, A.K.L., Zhang, H., Tan, K., Li, Z., Liu, J.H., Chan, P.K.S., Li, S.M., Chan, W.Y., Au, S.W.N., Joachimiak, A., Walz, T., Wang, J.H. & Shaw, P.C. 2008. Structure of the influenza virus A H5N1 nucleoprotein: Implications for RNA binding, oligomerization, and vaccine design. The FASEB Journal 22(10): 3638-3647.

Nourbakhsh, M., Sag, Y., Özer, D., Aksu, Z., Kutsal, T. & Caglar, A. 1994. A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters. Process Biochemistry 28: 1-5.

Park, J.K., Jin, Y.B. & Chang, H.N. 1999. Reusable biosorbents in capsules from Zoogloea ramigera cells for cadmium removal. Biotechnology and Bioengineering 63: 116-121.

Pittman, J.K., Dean, A.P. & Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology 102: 17-25.

Robbins, C.R. 2012. Chemical composition of different hair types. In Chemical and Physical Behavior of Human Hair. New York: Springer. pp. 105-176.

Sawalha, M.F., Peralta-Videa, J.R., Romero-González, J. & Gardea-Torresdey, J.L. 2006. Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. Journal of Colloid and Interface Science 300: 100-104.

Villaescusa, I., Fiol, N., Poch, J., Bianchi, A. & Bazzicalupi, C. 2011. Mechanism of removal by vegetable wastes: The contribution of π-π interactions, hydrogen bonding and hydrophobic effect. Desalination 270: 135-142.

Volesky, B. & May-Phillips, H. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 42: 797-806.

Wilhelmi, B. & Duncan, J. 1995. Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnology Letters 17: 1007-1012.

Xiangliang, P., Jianlong, W. & Daoyong, Z. 2005. Biosorption of Pb (II) by Pleurotus ostreatusimmobilized in calcium alginate gel. Process Biochemistry 40: 2799-2803.

Yin, P., Yu, Q., Jin, B. & Ling, Z. 1999. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Research 33: 1960-1963.

Zhou, J.L. & Kiff, R.J. 1991. The uptake of copper from aqueous solution by immobilized fungal biomass. Journal of Chemical Technology and Biotechnology 52: 317-330.

 

 

*Corresponding author; email: ehsan.ullah@uog.edu.pk

 

 

 

 

previous