Sains Malaysiana 47(1)(2018): 67–76
http://dx.doi.org/10.17576/jsm-2018-4701-08
Phosphorus
Sorption and Saturation in the Ganges Tidal Floodplain Soils of Bangladesh
(Serapan Fosforus dan Penepuan dalam Tanah Dataran Banjir Pasang Surut Ganges di
Bangladesh)
MD. FAZLUL HOQUE1, MD. HARUN-OR RASHID2, MD RAFIQUL ISLAM3, MD. SAIFUL ISLAM1,4* & MD. ABU SALEQUE5
1Department of
Soil Science, Patuakhali Science and Technology
University, Dumki, Patuakhali,
8602, Bangladesh
2Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
3Department of
Soil Science, Bangladesh Agricultural University, Mymensingh,
2202, Bangladesh
4Graduate School
of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama,
Kanagawa 240-8501, Japan
5Bangladesh Rice
Research Institute, Gazipur, Bangladesh
Received: 15
October 2015/Accepted: 19 June 2017
ABSTRACT
The soils developed from the
Ganges sediments in the coastal area of Bangladesh and India extend several
thousand hectares and important from the view point of rice cultivation.
Phosphorus, one of the important environmental and agricultural element, retention behavior of the Ganges floodplain soils
is poorly reported. The objective of this study was to determine maximum
phosphorus adsorption capacity (MPAC) and to develop Psat for
13 Ganges Tidal Floodplain soils of Bangladesh. The MPAC value
and Psat based
on Mehlich-3 extractions were determined. The conventional adsorption
equations, such as the Langmuir, Freudlich and Temkin equations were used to describe the P sorption of
the studied soils. The MPAC value varied from 1250 to 2000
mg/kg and correlated with EC (r = 0.59, p<0.05) and CEC (r
= -0.74, P<0.01). The sorption capacity of the tested soils ranged from 511
to 545 mg/kg and the calculated energy of adsorption of the soils varied from
0.192 to 1.00 μg/mL and it was a positively
correlated with clay (r=0.7, p<0.01) and CEC (r
= 0.63, p<0.05) but negatively with silt (r= -0.80, p<0.01), pH (H2O) (r=-0.60, p<0.05) and with MPAC (r=-0.59,
p<0.05) values. Phosphorus saturation indices of the studied sample
demonstrated a far below the threshold critical limit of 25%.
Keywords: Adsorption;
Bangladesh; buffering capacity; Langmuir equation; phosphorus sorption
ABSTRAK
Tanah
yang dibangunkan daripada
enapan Ganges di pesisir pantai negara Bangladesh dan India menganjur beberapa ribu hektar
dan penting
daripada sudut pandangan penanaman padi. Fosforus, salah
satu unsur penting dalam alam
sekitar dan
pertanian, tingkah laku penahanan di tanah dataran banjir
Ganges telah dilaporkan
secara tidak tepat.
Objektif kajian
ini adalah untuk
menentukan kemampuan maksimum penjerapan fosforus (MPAC) dan
untuk membangunkan
Psat
bagi 13 tanah Dataran
banjir air pasang
surut Ganges di Bangladesh. Nilai
MPAC
dan Psat berdasarkan
pengekstrakan Mehlich-3 telah
ditentukan. Persamaan penjerapan konvensional,
seperti persamaan
Langmuir, Freudlich dan
Temkin telah digunakan
untuk menggambarkan
serapan P daripada tanah yang dikaji. Nilai MPAC berbeza-beza
daripada 1250 kepada
2000 mg/kg dan berkorelasi
dengan EC (r = 0.59, p<0.05) dan CEC (r =-0.74, P<0.01). Nilai kapasiti serapan tanah yang diuji adalah daripada
511 kepada 545 mg/kg dan
tenaga yang dihitung daripada penjerapan tanah berbeza-beza daripada 0.192 kepada 1.00 μg/mL dan ia berkolerasi secara positif dengan tanah liat
(r= 0.7, p<0.01) dan CEC (r=0.63,
p<0.05) tetapi negatif
dengan keladak (r=-0.80, p<0.01),
pH (H2O) (r=-0.60, p<0.05)
dan MPAC (r=-0.59, p<0.05). Indeks tepu fosforus
sampel yang dikaji
menunjukkan ia
lebih rendah
daripada had kritikal ambang 25%.
Kata kunci: Bangladesh; keupayaan penampanan; penjerapan;
persamaan Langmuir; serapan
fosforus
REFERENCES
Abedin, M.J. & Saleque, M.A. 1998. Effects of phosphorus fertilizer management on phosphorus sorption
characteristics of lowland rice soil. Thai Journal of Agricultural Science 31:
122-129.
Adeniyi,
A.A., Yusuf, K.O. & Okedeyi, O.O. 2008. Assessment of the exposure of two fish species to metals pollution
in the Ogun river catchments, Kettu, Lagos, Nigeria. Environmental Monitoring and Assessment 137: 451-458.
Babou,
O.J., Shiow-Long, T. & Zeng, Y.H. 2007. Relationship between compost pH buffer capacity and P content on P
availability in a virgin Ultisol. Soil
Science 172: 68-85.
Bartolome,
V.I., Carrasco, M.C.C., Quintana, L.C., Ferino,
M.I.B., Mojica, J.Z., Olea, A.B., Paunnlagui, L.C.,
Ramos, C.G., Ynalvez, M.A. & Mclaren,
C.G. 1998. Experimental design and data analysis for
agricultural research. Vol. 1. IRRI, Manila, Philippines.
Beauchemin, S.
& Simadr, R.R. 1999. Soil phosphorus saturation degree: Review of some indices and their suitability
for P management in Quebec, Canada. Canadian Journal of Soil Science 79:
615-625.
Davis, R.L., Zhang, H., Schroder, J.L., Wang, J.J., Payton, M.
& Zazulak, A. 2005. Soil characteristics and phosphorus level effect on phosphorus loss in runoff. Journal
of Environmental Quality 34: 1640-1650.
FRG. 2005. Fertilizer recommendation guide. Soils
Publication No. 45. Bangladesh Agricultural Research
Council, Farmgate, New Airport Road, Dhaka. p. 23.
Harter, R.D. 1984. Curve-fit errors in Langmuir adsorption Maxima. Soil Science Society of America Journal 48: 749- 752.
Hoque,
M.F., Haque, M.A., Hossain, M.K., Haque,
M.Z. & Hussain, A.S.M.I. 2011. Characterization of some coastal delta
soils of Bangladesh. Journal of Bangladesh Society of Agricultural Science
and Technology 8: 77-82.
Hoque,
M.F., Islam, M.S., Islam, M.R., Rashid, M.H. & Saleque,
M.A. 2015. Phosphorus fractionations in Ganges tidal floodplain soil of Bangladesh. Bangladesh
Rice Journal 19(2): 57-63.
Huber,
H., Jacobs, E. & Visser, E.J.W. 2009. Variation in flooding-induced morphological traits in natural
populations of white clover (Trifolium repens) and their effects on plant performance during soil
flooding. Annals of Botany 103: 377-386.
Ige,
D.V., Akinremi, O.O. & Flaten,
D.N. 2005. Environmental index for estimating the risk of phosphorus
loss in calcareous soils of Manitoba. Journal of Environmental
Quality 34: 1944-1951.
Islam,
R.M. 2003.
Phosphorus chemistry in wetland rice soil profile
of a Vertic Haplustept. M.Sc.
Thesis. Department of Soil Science. Bangabandhu Sheikh Mujibur Rahman
Agricultural University, Salna, Gazipur
(Unpublished).
Islam,
M.S., Ahmed, M.K. & Al-mamun, M.H. 2015a. Metal speciation in soil and health risk due to vegetables
consumption in Bangladesh. Environmental Monitoring and Assessment 187:
288-303.
Islam,
M.S., Ahmed, M.K. & Al-mamun, M.H. 2015b. Distribution of
trace elements in different soils and risk assessment: A case study for the
urbanized area in Bangladesh. Journal of Geochemical Exploration 158:
212-222.
Islam,
M.S., Ahmed, M.K., Al-mamun, M.H. & Masunaga, S. 2014. Trace metals in soil and
vegetables and associated health risk assessment. Environmental Monitoring
and Assessment 186: 8727-8739.
Islam,
M.A., Saleque, M.A., Islam, M.S., Karim, A.J.M.S., Solaiman, A.R.M. & Islam, A. 2010. Phosphorus
fractionations in acidic piedmont rice soils. Communication Soil Science and
Plant Analysis 41: 1178-1194.
Islam,
M.A., Saleque, M.A., Karim, A.J.M.S., Solaiman, A.R.M. & Masud,
M.M. 2007. Characterization of acid piedmont rice soils for phosphorus sorption and
phosphorus saturation. Bulletin of the Institute of Tropical Agriculture
Kyushu Univ. 30: 11-27.
Kleinman,
P.J.A. & Sharpley, A.N. 2002. Estimating phosphorus sorption saturation from Mehlich-3 data. Communications in Soil Science and Plant Analysis 33: 1825-1839.
Lair,
G.J., Zehetner, F., Khan, Z.H. & Gerzabek, M.H. 2009. Phosphorus sorption-desorption
in alluvial soils of a young weathering sequence at the Danube River. Geoderma 149: 39-44.
Litaor,
M.I., Reichman, O., Haim, A., Auerswald,
K. & Shenker, M. 2005. Sorption characteristics of phosphorus in peat soils of semiarid
and altered wetland. Soil Science Society of America Journal 69:
1658-1665.
Manning,
P., Putwain, P.D. & Webb, N.R. 2006. The role of soil phosphorus sorption characteristics in the
functioning and stability of lowland heath ecosystems. Biogeochemistry 81: 205-217.
Mallarino, A.P. 1997.
Interpretation of soil phosphorus tests for corn in soils with varying pH and
calcium carbonate content. Journal of Production Agriculture 10:
163-167.
Mehadi,
A.A. & Taylor, R.W. 1988. Phosphate adsorption
by two highly weathered soils. Soil Science Society of America
Journal 52: 627-632.
Mehlich,
A. 1984. Mehlich-3 soil test extraction: A modification of Mehlich 2 extractant. Communications in Soil Science and
Plant Analysis 15: 1409-1416.
Mehra,
O.P. & Jackson, M.L. 1960. Iron oxide removal from soils and clays
by dithionite citrate system buffered with sodium bicarbonate. Proc. 7th Nat. Conf. Clays and Clay Min. New
York: Pergamon Press. pp. 317-327.
Murphy,
J. & Riley, J.P. 1962. A modified single
solution method for determination of phosphate in natural waters. Analytica Chemica Acta27: 31-36.
Nelson,
D.W. & Sommers, L.E. 1982. Total carbon, organic
carbon, and organic matter. In Methods of Soil Analysis, Part 2:
Chemical and Microbiological Properties. 2nd ed., edited by Page, A.L.,
Miller, R.H. & Keeney, D.R. Madison, Wisconsin: American Society of
Agronomy, Inc. & Soil Science Society of America, Inc. pp. 539-577.
Nizam,
M.U., Shariful, M. & Saleque,
M.A. 2008. Phosphorus sorption in clay loam soils influenced by phosphatic fertilizer. International Journal of Sustainable Agriculture 4: 12-17.
Rupa,
T.R., Tomar, K.P., Srinivasa Rao, C.H. & Subba Rao, A. 2001. Kinetics of
phosphate sorption-desorption as influenced by soil pH and electrolyte. Agrochimica 45: 124-133.
Saleque,
M.A. & Kirk, G.J.D. 1995. Root-induced solubilization of phosphate in the rhizosphere of lowland
rice. New Phytologist129: 325-336.
Saleque,
M.A., Naher, U.A., Pathan,
A.B.M.B.U., Hossain, A.T.M.S. & Meisner, C.A.
2004. Inorganic and organic phosphorus fertilizer effects on the phosphorus fraction
in wetland rice soils. Soil Science Society of America Journal 68:
1635-1644.
Saleque,
M.A., Uddin, M.K., Salam, M.A., Ismail, A.M. & Haefele,
S.M. 2010. Soil characteristics of saline and non-saline deltas of
Bangladesh. In Tropical Deltas and Coastal Zones: Food Production,
Communities and Environment at the Land and Water Interface, edited by Hoanh, C.T., Szuster, B., Kam,
S., Ismail, A. & Noble, A. CAB International, Wallingford, U.K. pp.
144-153.
Sharpley, A.N. 1996. Availability of residual phosphorus in manured soils. Soil
Science Society of America Journal 60: 1459-1466.
Sui,
Y. & Thompson, M.L. 2000. Phosphorus sorption, desorption and
buffering capacity in a biosolids amended mollisol. Soil Science Society of America Journal 64:
164-169.
Wang,
Y., Shen, Z., Niu, J. & Liu, R. 2008. Adsorption of phosphorus on sediments from the Three-Gorges
Reservoir (China) and the relation with sediment composition. Hazard Mater. 18554791 (P.S.G.E.B.D). College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou
310029, PR China (Unpublished).
Wardle,
D.A., Walker, L.R. & Bardgett, R.D. 2004. Ecosystem
properties and forest decline in contrasting long-term chronosequences. Science 305: 509-513.
Zhang,
H., Schroder, J.L., Furman, J.K., Basta, N.T. &
Payton, M.E. 2005. Path and multiple regression analyses of phosphorus sorption
capacity. Soil Science Society of America Journal 69: 96-106.
Zhou,
M. & Li, Y. 2001. Phosphorus-sorption characteristics of calcareous soils and
limestone from the southern everglades and adjacent farmlands. Soil
Science Society of America Journal 65: 1404-1412.
*Corresponding author; email: islam-md.saiful-nj@ynu.jp
|