Sains Malaysiana 47(1)(2018): 77–84
http://dx.doi.org/10.17576/jsm-2018-4701-09
Evaluation
of Climate Variability Performances using Statistical Climate Models
(Penilaian Prestasi Kebolehubahan Iklim menggunakan Model Statistik Iklim)
NURUL NADRAH AQILAH TUKIMAT1,2*, AHMAD SAIFUDDIN OTHMAN1, SAFFUAN WAN AHMAD1,2 & KHAIRUNISA MUTHUSAMY1,2
1Faculty of Civil Engineering
& Earth Resources, Universiti Malaysia Pahang, 26300
Kuantan, Pahang Darul Makmur, Malaysia
2Centre for Earth Resources
Research & Management (CERRM), Universiti Malaysia Pahang, 26300 Kuantan, Pahang Darul Makmur, Malaysia
Received: 16 February 2017/Accepted:
30 June 2017
ABSTRACT
Uncertainty of the climates
nowadays brings the crucial calamities problems especially at unexpected areas
and in anytime. Thus, the projection of climate variability becomes significant
information especially in the designing, planning and managing of water
resources and hydrological systems. Numerous climate models with varies methods
and purposes have been developed to generate the local weather scenarios with
considered the greenhouse gasses (GHGs) effect provided by
General Circulation Models (GCMs). However, the accuracy
and suitability of each climate models are depending on the atmospheric
characters’ selection and the variables consideration to form the statistical
equation of local-global weather relationship. In this study, there are two
well-known statistical climate models were considered; Lars-WG and SDSM models represent for the regression and weather typing methods,
respectively. The main aim was to evaluate the performances among these climate
models suit for the Pahang climate variability for the upcoming year
Δ2050. The findings proved the Lars-WG as a reliable climate
modelling with undemanding data sources and use simpler analysis method
compared to the SDSM. It is able to produce better
rainfall simulated results with lesser %MAE and higher R value close to
1.0. However, the SDSM lead in the temperature
simulation with considered the most influenced meteorological parameters in the
analysis. In year Δ2050, the temperature is expected to rise achieving
35°C. The rainfall projection results provided by these models are not consistent
whereby it is expecting to increase 2.6% by SDSM and
reduce 1.0% by Lars-WG from the historical trend and
concentrated on Nov.
Keywords: Climate
performance; climate prediction; lars-wg; Pahang
climate; SDSM
ABSTRAK
Ketidaktentuan cuaca kini
membawa kepada bencana alam yang dahsyat terutama kepada kawasan yang tidak dijangka dan dalam masa yang tidak menentu. Oleh itu, unjuran perubahan
iklim menjadi
maklumat penting terutama dalam reka bentuk, perancangan
dan pengurusan
sumber air dan sistem hidro. Pelbagai
model iklim dengan metod
dan tujuan
yang berbeza telah dibangunkan
untuk menjana
senario iklim setempat
dengan mengambil
kira kesan gas rumah hijau yang dibekalkan oleh Model Sikulasi Umum (GCMs).
Namun,
ketepatan dan keseimbangan
setiap model iklim
adalah bergantung kepada pemilihan ciri atmosfera dan variasi yang digunakan untuk membentuk persamaan statistik bagi hubungan cuaca setempat-global. Dalam kajian
ini, 2 model iklim
statistik telah digunakan; Model Lars-WG dan Model SDSM mewakili
kaedah regresi
dan kaedah cuaca
penaipan. Tujuan utama
adalah untuk
menilai prestasi antara model yang bersesuaian
dengan kebolehubahan iklim di Pahang pada tahun 2050. Keputusan telah menunjukkan
bahawa Lars-WG sebagai
model iklim yang boleh
dipercayai tanpa memerlukan sumber data yang
banyak dan menggunakan
kaedah yang lebih
mudah berbanding SDSM.
Ia juga dapat
menghasilkan keputusan
simulasi yang lebih baik dengan %MAE yang
lebih sedikit
dan nilai R menghampiri
1.0. Walau
bagaimanapun, SDSM mengungguli
bagi simulasi
suhu dengan mengambil
kira parameter meteorologi
yang paling berpengaruh dalam
analisis. Keputusan
unjuran iklim menunjukkan
bahawa suhu
dianggarkan akan
meningkat sehingga
mencecah 35°C. Walau bagaimanapun, model tersebut
menghasilkan laporan unjuran hujan yang tidak tekal dengan hujan tahunan
dianggarkan meningkat
sebanyak 2.6% oleh SDSM
dan berkurangan
sebanyak 1.0% oleh
Lars-WG
daripada sejarah aliran dengan anggaran
bahawa hujan
lebat tertumpu pada bulan Nov.
Kata kunci: Iklim Pahang; jangkaan iklim;
lars-wg; prestasi iklim; SDSM
REFERENCES
Chen,
H., Guo, J., Zhang, Z. & Xu, C. 2012. Prediction
of temperature and precipitation in Sudan and South Sudan by using LARS-WG in
future. Theoretical and Applied Climatology 113(3-4): 363-375. doi:10.1007/s00704-012- 0793-9.
Chu,
J.T., Xia, J., Xu, C.Y. & Singh, V.P. 2009. Statistical
downscaling of daily mean temperature, pan evaporation, and precipitation for
climate change scenarios in Haihe River, China. Theoretical and Applied Climatology 99(1-2): 149-161. doi:10.1007/s00704-009-0129-6.
Hashmi, M.Z., Shamseldin, A.Y. &
Melville, B.W. 2011. Statistical downscaling of watershed
precipitation using gene expression programming (GEP). Environmental
Modeling Software 26(12): 1639-1646. doi:10.1016/j.
envsoft.2011.07.007.
Hashmi, M.Z., Shamseldin, A.Y. & Melville, B.W. 2009. Statistical downscaling of
precipitation: State-of-the-art and application of Bayesian multi-model
approach for uncertainty assessment. Hydrol. Earth Syst. Sci. 6: 6535-6579.
Hassan, Z. & Harun, S. 2012. Application of statistical downscaling model for long lead rainfall
prediction in Kurau River catchment of Malaysia. Malaysia Journal of Civil Engineering 24(1): 1-12.
Hamidon, N., Harun,
S., Malek, M.A., Ismail, T. & Alias, N. 2015. Prediction f paddy irrigation
requirements using statistical downscaling and cropwat models: A case study from Kerian Irrigation Scheme in
Malaysia. Jurnal Teknologi 76(1): 281-288.
Ismail, M., Suroto, A., Ismail, N.A. & Latif, M.T. 2014. Surface ozone trend in major
rice growing areas in Malaysia. Sains Malaysiana43(3): 321-329.
Kwan, M.S., Fredolin, T.T. & Juneng, L.
2013. Projected changes of future climate extremes in Malaysia. Sains Malaysiana42(8):
1051-1058.
Lee, J.H.W.
& Lam, K.M. 2004. Environmental hydraulics and sustainable water management two volume set. Proceedings of the 4th
International Symposium on Environmental Hydraulics & 14th Congress of Asia
and Pacific Division. International Association of Hydraulic
Engineering and Research, 15-18 December, Hong Kong.
Mohsen, S., Zulkifli, Y., Milad, J. & Fadhilah, Y. 2014. Development of generalized feed
forward network for predicting annual flood (depth) of a tropical river. Sains Malaysiana43(12):
1865-1871.
Semenov, M.A.
& Barrow, E.M. 2002. LARS-WG - A Stochastic Weather Generator for use in Climate Impact Studies. Hertfordshire: Rothamsted Research Harpenden.
Tukimat, N.N.A. & Harun, S. 2013. The projection of future rainfall change over Kedah, Malaysia with
the statistical downscaling model. MJCE 23: 67-79.
Tukimat, N.N.A. &
Alias, N.A. 2016. Assessment the potential of SRES scenario for Kuala Sala,
Malaysia. IOSR-JMCE 13(3): 06-12.
Wilby, R.L. &
Dawson, C.W. 2007. SDSM 4.2 - A Decision Support Tool for the Assessment of Regional Climate
Change Impacts. Lancaster University, Science Department, Environment
Agency of England and Wales Department of Computer Science, Loughborough
University, UK.
Yano, T.,
Aydin, M. & Haraguchi, T. 2007. Impact of
climate change on irrigation demand and crop growth in a Mediterranean
environment of turkey. Sensors 7(10): 2297- 2315.
*Corresponding
author; email: nadrah@ump.edu.my
|