Sains Malaysiana 45(5)(2017):
377-386
http://dx.doi.org/10.17576/jsm-2018-4702-20
Factors Affecting
Cellulose Dissolution of Oil Palm Empty Fruit Bunch and Kenaf Pulp in NaOH/Urea Solvent
(Faktor
Mempengaruhi Pelarutan Selulosa daripada Pulpa Tandan
Kosong Kelapa Sawit dan Kenaf dalam Pelarut NaOH/Urea)
Khairunnisa Waznah
Baharin1, Sarani Zakaria1*, Amanda V. Ellis2, Noraini Talip3,
Hatika Kaco1, Sinyee Gan1, Farrah Diyana Zailan4 & Sharifah Nurul Ain Syed Hashim1
1Bioresources & Biorefinery
Laboratory, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2School of Chemical
Engineering, University of Melbourne, Melbourne, Victoria, Australia
3Microtechnique and
Plant Anatomy Research Team, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
4School of Applied
Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 5 December 2016/Accepted: 31 July 2017
ABSTRACT
The factors responsible for the low
solubility percentage of oil palm empty fruit bunch (OPEFB) cellulose pulp
compared to kenaf when dissolved in aqueous NaOH/urea solvent system was
reported. Physical and chemical properties of both cellulose pulp were studied
and compared in terms of the lignin content, viscosity average molecular weight
(Mη), crystallinity index (CrI), cellulose pulp structure and their zero
span tensile strength. The structure of both OPEFB and kenaf cellulose pulp
were characterized using high powered microscope and field emission scanning
electron microscopy (FESEM) assisted by ImageJ® software. The
results show
that the most significant factor that affected the OPEFB and kenaf cellulose
dissolution in NaOH/-urea solvent was the Mη with OPEFB
having a higher Mη of 1.68×105 compared to 5.53 ×
104 for kenaf. Overall, kenaf cellulose appeared to be produced in
higher quantities presumably due to its lower molecular weight with superior
tensile strength and permeability in comparison to OPEFB.
Keywords: Cell wall
thickness; lumen size; solubility percentage; XRD
ABSTRAK
Faktor
menyebabkan peratus pelarutan selulosa tandan kosong kelapa sawit (TKKS) yang
rendah berbanding selulosa kenaf apabila dilarutkan di dalam sistem pelarut
akueus NaOH/urea dilaporkan. Sifat fizikal dan kimia selulosa dari pulpa TKKS
dan kenaf dikaji dan dibandingkan
dari segi kandungan lignin, purata berat molekul (Mη), indeks penghabluran
(CrI), struktur pulpa selulosa dan kekuatan tegangan zero-span. Struktur
kedua-dua pulpa selulosa dilihat dan dikaji dengan menggunakan mikroskop
berkuasa tinggi dan (FESEM) dibantu dengan perisian ImageJ®. Daripada pencirian
yang telah dijalankan, faktor yang memberikan kesan paling signifikan kepada
pelarutan selulosa adalah berat molekul pulpa memandangkan berat molekul pulpa
OPEFB yang diperolehi adalah lebih tinggi daripada kenaf dengan 1.68
× 105 dan 5.53 × 104 masing-masing. Secara keseluruhannya,
dianggarkan kandungan selulosa daripada kenaf adalah lebih tinggi disebabkan
berat molekul yang rendah tetapi mempunyai kekuatan tegangan dan kebolehtelapan
yang lebih baik daripada TKKS.
Kata
kunci: Ketebalan
dinding sel; peratus keterlarutan; saiz lumen; XRD
REFERENCES
Alves, L., Medronho, B., Antunes, F.E., Topgaard, D. & Lindman, B.
2015. Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose. DOI 10.1007/s10570-015-0809-6.
Cai, J. & Zhang,
L. 2005. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous
solutions. Macromolecular 41: 9345-9351.
Cai, J., Liu, Y.
& Zhang, L. 2006. Dilute solution properties of cellulose in LiOH/urea
aqueous
system. Journal of Polymer Science Part B: Polymer Physics 44(21): 3093-3101.
Ching, Y.C. & Ng, T.S. 2014. Effect of preparation conditions on cellulose
from oil palm empty fruit bunch fiber. BioResources 9(4): 6373-6385.
Chinga-Carrasco, G., Solheim, O., Lenes, M. & Larsen, A. 2013. A
method for estimating the fibre length in fibre-PLA composites. Journal of
Microscopy 250: 15-20.
Chirayil, C.J., Joy, J., Mathew, L., Mozetic, M., Koetz, J. & Thomas,
S. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59: 27-34.
Eichhorn, S.J., Baillie, C.A., Mwaikambo, L.Y., Ansell, M.P., Dufresne,
A., Entwistle, K.M., Herrera, P.J., Escamilla, G.C., Groom, L., Hughes, M.,
Hill, C., Rials, T.G. & Wild, P.M. 2001. Current international research
into cellulosic fibers and composites. Journal of Materials Science 36: 2107-2131.
Fengel, D. &
Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Location: Walter de Gruyter & Co.,
Berlin. pp. 1-174.
Gan, S.Y., Zakaria,
S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015a. Effect of hydrothermal
pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Carbohydrate
Polymers 115: 62-68.
Gan, S.Y., Padzil,
F.N.M., Zakaria, S., Chia, C.H., Syed Jaafar, S.N. & Chen, R.S. 2015b.
Synthesis of liquid hot water cotton linter to prepare cellulose membrane using
NaOH/urea or LiOH/urea. BioResources 10(2): 2244-2255.
Gan, S.Y., Zakaria,
S., Chia, C.H., Kaco, H. & Padzil, F.N.M. 2014. Synthesis of kenaf cellulose carbamate using microwave
irradiation for preparation of cellulose membrane. Carbohydrate Polymers 106: 160-165.
Pulp & Paper
Resource & Information Site. 2017. Properties of pulp. http://www.paperonweb.com/pulppro.html. Accessed on 15 July 2017.
Hartig,
S.M. 2013. Basic image analysis and manipulation in image j. Current
Protocols in Molecular Biology 102: 14.15.1-14.15.12.
Kaco,
H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014.
Properties of cellulose hydrogel from kenaf core prepared via pre-cooled dissolving
method. Sains Malaysiana 43(8):
1221-1229.
Kho,
L.K. & Jepsen, M.R. 2015. Carbon stock of oil palm plantations and tropical
forests in Malaysia: A review. Singapore Journal of Tropical Geography 36: 249-266.
Lamaming, J., Hashim,
R., Leh, C.P., Sulaiman, O., Sugimoto, T. & Nasir, M. 2015. Isolation and
characterization of cellulose nanocrystals from parenchyma and vascular bundle
of oil palm trunk (Elaeis guineensis). Carbohydrate Polymer 10(134): 534-540.
Law, K.N., Wan Daud,
W.R. & Ghazali, A. 2007. Morphological and chemical nature of fiber strands
of oil palm empty fruit bunch (OPEFB). BioResources 2: 351-362.
Li, Q., Wu, P., Zhou,
J. & Zhang, L. 2012. Structure and solution properties of cyanoethyls
cellulose synthesized in LiOH/urea aqueous solution. Cellulose 19: 161-169.
Liu, W. 2013.
Solutions de cellulose et matériaux hybrides/composites à base de liquides
ioniques et solvants alcalins. Thesis. Ecole Nationale Supérieure des Mines de
Paris (Unpublished). pp. 4-35.
Luo, X. & Zhang,
L. 2013. New solvents and functional materials prepared from cellulose
solutions in alkali/urea aqueous system. Food Research International 52:
387-400.
Moon, R.J., Martini, A., Nairn, J.,
Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and
nanocomposites. Chem. Soc. Rev. 40: 3941-3994.
Nazir, M.S.,
Wahjoedi, B.A., Yussof, A.W. & Abdullah, M.A. 2013. Eco-friendly extraction
and characterization of cellulose from oil palm empty fruit bunches. Bioresources 8(2): 2161-2172.
Nurdiawati, A.,
Novianti, S., Zaini, I.N., Nakhshinieva, B., Sumida, H., Takahashi, F. &
Yoshikawa, K. 2015. Evaluation of hydrothermal treatment of empty fruit bunch
for solid fuel and liquid organic fertilizer co-production. International
Conference on Alternative Energy in Developing Countries and Emerging
Economies. Energy Procedia. 79: 226-232.
Olsson, C. &
Westman, G. 2013. Direct dissolution of cellulose: Background, means and
applications. Cellulose - Fundamental Aspect 6: 143-178.
Rowell, R.M. &
Young, R.A. 1978. Modified Cellulosics. New York: Academic Press. American
Chemical Society. Cellulose, Paper and Textile Division. pp. 10-51.
Saba, Paridah, M.T.,
Abdan, K. & Ibrahim, N.A. 2016. Dynamic mechanical properties of oil palm
nano filler/kenaf /epoxy hybrid nanocomposites. Construction and Building
Materials 124: 133-138.
Sajab, M.S., Chia,
C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chin,
W.S. 2011. Citric acid modified kenaf core fibers for removal of methylene blue
from aqueous solution. Bioresource Technology 102(15): 7237-7243.
Siqueira, G., Bras,
J. & Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic source of fiber,
microfibrillated cellulose and cellulose nanocrystal. BioResources 5(2):
727-740.
Strunk, P. 2012.
Characterization of cellulose pulps and the influence of their properties on
the process and production of viscose and cellulose ethers. PhD Thesis. Department of Chemistry
Umea University, Sweden (Unpublished).
Wang, Y. & Deng,
Y. 2009. The kinetics of cellulose dissolution in sodium hydroxide solution at
low temperatures. Biotechnology and Bioengineering.102: 1398-1405.
Xiao, B., Sun, X.F.
& Sun, R.C. 2001. Chemical, structural and thermal characterization of
alkali-soluble lignins and hemicelluloses and cellulose from maize stems and
rice straw. Polymer Degradation and Stability 74: 307-319.
Zhang, S., Li, F-X.,
Yu, J-Y. & Hsieh, Y-L. 2010. Dissolution behaviour and solubility of
cellulode in NaOH complex solution. Carbohydrate Polymers 81: 668-674.
Zhou, J., Zhang, L.
& Cai, J. 2004. Behaviour of cellulose in NaOH/urea aqueous solution
characterized by light scattering and viscometry. Journal of Polymer
Science: Part A: Polymer Science 42: 5911-5920.
Zhou, J. & Zhang,
L. 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polymer
Journal 32(10): 866-870.
Zhou, J. & Li, J.
2014. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production
yield and chemical and morphological structures from different tunicate
species. Cellulose 21: 3427-3441.
*Corresponding author; email: szakaria@ukm.edu.my
|