Sains Malaysiana 45(5)(2017): 377-386

http://dx.doi.org/10.17576/jsm-2018-4702-20

 

Factors Affecting Cellulose Dissolution of Oil Palm Empty Fruit Bunch and Kenaf  Pulp in NaOH/Urea Solvent

(Faktor Mempengaruhi Pelarutan Selulosa daripada Pulpa Tandan Kosong Kelapa Sawit dan Kenaf dalam Pelarut NaOH/Urea)

 

Khairunnisa Waznah Baharin1, Sarani Zakaria1*, Amanda V. Ellis2, Noraini Talip3, Hatika Kaco1, Sinyee Gan1, Farrah Diyana Zailan4 & Sharifah Nurul Ain Syed Hashim1

 

1Bioresources & Biorefinery Laboratory, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Chemical Engineering, University of Melbourne, Melbourne, Victoria, Australia

 

3Microtechnique and Plant Anatomy Research Team, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4School of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 5 December 2016/Accepted: 31 July 2017

 

ABSTRACT

The factors responsible for the low solubility percentage of oil palm empty fruit bunch (OPEFB) cellulose pulp compared to kenaf when dissolved in aqueous NaOH/urea solvent system was reported. Physical and chemical properties of both cellulose pulp were studied and compared in terms of the lignin content, viscosity average molecular weight (Mη), crystallinity index (CrI), cellulose pulp structure and their zero span tensile strength. The structure of both OPEFB and kenaf cellulose pulp were characterized using high powered microscope and field emission scanning electron microscopy (FESEM) assisted by ImageJ® software. The results show that the most significant factor that affected the OPEFB and kenaf cellulose dissolution in NaOH/-urea solvent was the with OPEFB having a higher Mη of 1.68×105 compared to 5.53 × 104 for kenaf. Overall, kenaf cellulose appeared to be produced in higher quantities presumably due to its lower molecular weight with superior tensile strength and permeability in comparison to OPEFB.

 

Keywords: Cell wall thickness; lumen size; solubility percentage; XRD  

 
ABSTRAK
 

Faktor menyebabkan peratus pelarutan selulosa tandan kosong kelapa sawit (TKKS) yang rendah berbanding selulosa kenaf apabila dilarutkan di dalam sistem pelarut akueus NaOH/urea dilaporkan. Sifat fizikal dan kimia selulosa dari pulpa TKKS dan kenaf  dikaji dan dibandingkan dari segi kandungan lignin, purata berat molekul (Mη), indeks penghabluran (CrI), struktur pulpa selulosa dan kekuatan tegangan zero-span. Struktur kedua-dua pulpa selulosa dilihat dan dikaji dengan menggunakan mikroskop berkuasa tinggi dan (FESEM) dibantu dengan perisian ImageJ®. Daripada pencirian yang telah dijalankan, faktor yang memberikan kesan paling signifikan kepada pelarutan selulosa adalah berat molekul pulpa memandangkan berat molekul pulpa OPEFB yang diperolehi adalah lebih tinggi daripada kenaf  dengan 1.68 × 105 dan 5.53 × 104 masing-masing. Secara keseluruhannya, dianggarkan kandungan selulosa daripada kenaf adalah lebih tinggi disebabkan berat molekul yang rendah tetapi mempunyai kekuatan tegangan dan kebolehtelapan yang lebih baik daripada TKKS. 

 

Kata kunci: Ketebalan dinding sel; peratus keterlarutan; saiz lumen; XRD  

 

REFERENCES

Alves, L., Medronho, B., Antunes, F.E., Topgaard, D. & Lindman, B. 2015. Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose. DOI 10.1007/s10570-015-0809-6.

Cai, J. & Zhang, L. 2005. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous
   solutions. Macromolecular 41: 9345-9351.

Cai, J., Liu, Y. & Zhang, L. 2006. Dilute solution properties of cellulose in LiOH/urea aqueous
   system. Journal of Polymer Science Part B: Polymer Physics 44(21): 3093-3101.

Ching, Y.C. & Ng, T.S. 2014. Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. BioResources 9(4): 6373-6385.

Chinga-Carrasco, G., Solheim, O., Lenes, M. & Larsen, A. 2013. A method for estimating the fibre length in fibre-PLA composites. Journal of Microscopy 250: 15-20.

Chirayil, C.J., Joy, J., Mathew, L., Mozetic, M., Koetz, J. & Thomas, S. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59: 27-34.

Eichhorn, S.J., Baillie, C.A., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G. & Wild, P.M. 2001. Current international research into cellulosic fibers and composites. Journal of Materials Science 36: 2107-2131.

Fengel, D. & Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Location: Walter de Gruyter & Co., Berlin. pp. 1-174.

Gan, S.Y., Zakaria, S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015a. Effect of hydrothermal pretreatment on solubility and formation of kenaf  cellulose membrane and hydrogel. Carbohydrate Polymers 115: 62-68.

Gan, S.Y., Padzil, F.N.M., Zakaria, S., Chia, C.H., Syed Jaafar, S.N. & Chen, R.S. 2015b. Synthesis of liquid hot water cotton linter to prepare cellulose membrane using NaOH/urea or LiOH/urea. BioResources 10(2): 2244-2255.

Gan, S.Y., Zakaria, S., Chia, C.H., Kaco, H. & Padzil, F.N.M. 2014. Synthesis of kenaf  cellulose carbamate using microwave irradiation for preparation of cellulose membrane. Carbohydrate Polymers 106: 160-165.

Pulp & Paper Resource & Information Site. 2017. Properties of pulp.  http://www.paperonweb.com/pulppro.html. Accessed on 15 July 2017.

Hartig, S.M. 2013. Basic image analysis and manipulation in image j. Current Protocols in Molecular Biology 102: 14.15.1-14.15.12.

Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf  core prepared via pre-cooled dissolving method. Sains Malaysiana 43(8): 1221-1229.

Kho, L.K. & Jepsen, M.R. 2015. Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. Singapore Journal of Tropical Geography 36: 249-266.

Lamaming, J., Hashim, R., Leh, C.P., Sulaiman, O., Sugimoto, T. & Nasir, M. 2015. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydrate Polymer 10(134): 534-540.

Law, K.N., Wan Daud, W.R. & Ghazali, A. 2007. Morphological and chemical nature of fiber strands of oil palm empty fruit bunch (OPEFB). BioResources 2: 351-362. 

Li, Q., Wu, P., Zhou, J. & Zhang, L. 2012. Structure and solution properties of cyanoethyls cellulose synthesized in LiOH/urea aqueous solution. Cellulose 19: 161-169.

Liu, W. 2013. Solutions de cellulose et matériaux hybrides/composites à base de liquides
ioniques et solvants alcalins. Thesis. Ecole Nationale Supérieure des Mines de Paris (Unpublished)
. pp. 4-35.

Luo, X. & Zhang, L. 2013. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Research International 52: 387-400.

Moon, R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941-3994.

Nazir, M.S., Wahjoedi, B.A., Yussof, A.W. & Abdullah, M.A. 2013. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources 8(2): 2161-2172.

Nurdiawati, A., Novianti, S., Zaini, I.N., Nakhshinieva, B., Sumida, H., Takahashi, F. & Yoshikawa, K. 2015. Evaluation of hydrothermal treatment of empty fruit bunch for solid fuel and liquid organic fertilizer co-production. International Conference on Alternative Energy in Developing Countries and Emerging Economies. Energy Procedia. 79: 226-232.

Olsson, C. & Westman, G. 2013. Direct dissolution of cellulose: Background, means and applications. Cellulose - Fundamental Aspect 6: 143-178.

Rowell, R.M. & Young, R.A. 1978. Modified Cellulosics. New York: Academic Press. American Chemical Society. Cellulose, Paper and Textile Division. pp. 10-51.

Saba, Paridah, M.T., Abdan, K. & Ibrahim, N.A. 2016. Dynamic mechanical properties of oil palm nano filler/kenaf /epoxy hybrid nanocomposites. Construction and Building Materials 124: 133-138.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chin, W.S. 2011. Citric acid modified kenaf core fibers for removal of methylene blue from aqueous solution. Bioresource Technology 102(15): 7237-7243.

Siqueira, G., Bras, J. & Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystal. BioResources 5(2): 727-740.

Strunk, P. 2012. Characterization of cellulose pulps and the influence of their properties on the process and production of viscose and cellulose ethers. PhD Thesis. Department of Chemistry Umea University, Sweden (Unpublished).

Wang, Y. & Deng, Y. 2009. The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnology and Bioengineering.102: 1398-1405.

Xiao, B., Sun, X.F. & Sun, R.C. 2001. Chemical, structural and thermal characterization of alkali-soluble lignins and hemicelluloses and cellulose from maize stems and rice straw. Polymer Degradation and Stability 74: 307-319.

Zhang, S., Li, F-X., Yu, J-Y. & Hsieh, Y-L. 2010. Dissolution behaviour and solubility of cellulode in NaOH complex solution. Carbohydrate Polymers 81: 668-674.

Zhou, J., Zhang, L. & Cai, J. 2004. Behaviour of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. Journal of Polymer Science: Part A: Polymer Science 42: 5911-5920.

Zhou, J. & Zhang, L. 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polymer Journal 32(10): 866-870.

Zhou, J. & Li, J. 2014. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21: 3427-3441.

 

*Corresponding author; email: szakaria@ukm.edu.my

 

 

 

 

 

previous