Sains Malaysiana 47(2)(2018): 393-402

http://dx.doi.org/10.17576/jsm-2018-4702-22

 

Effect of Nickel Catalyst Layer Thickness and Grain Size Prepared by Electroplating Method to the Growth of Carbon Nanostructures by Chemical Vapour Deposition

(Kesan terhadap Ketebalan Lapisan dan Saiz Bijian Pemangkin Nikel Disedia dengan Kaedah Sadur Elektrik pada Pertumbuhan Karbon Nanostruktur melalui Kaedah Pemendapan Wap Kimia)

 

Roszaini Md Salleh1, Wei-Ming Yeoh2, Abdul Rahman Mohamed1* & Raihana Bahru1

 

1School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

2Department Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Darul Ridzuan, Malaysia

 

Received: 26 March 2017/Accepted: 17 August 2017

 

 

ABSTRACT

A simple method of growing carbon nanostructures (CNS), a mixture of carbon nanotube (CNT) and carbon nanofiber (CNF), directly on a nickel catalyst layer electroplated on the copper substrate at low reaction temperature and atmospheric pressure via chemical vapor deposition (CVD) was investigated in this study. The nickel catalyst was prepared using electroplating methods and the current density was varied to give the nickel catalyst layer with different thicknesses and grain sizes prior to the growth of CNS which was carried out at 600°C and under a mixture of 25 sccm: 100 sccm of acetylene to nitrogen for 40 min. A nickel catalyst layer electroplated at 1 mA/cm2, which possess a smaller grain size and thinner layer of nickel catalyst, enables the synthesis of high quality and dense CNS as well as high ratio of CNT over CNF.    

Keywords: Carbon nanostructures; chemical vapor deposition (CVD); electroplating; nickel catalyst layer

 

ABSTRAK

Kaedah mudah untuk pertumbuhan terus nanostruktur karbon adalah gabungan antara nanotiub karbon dan nanoserabut karbon di atas substrat kuprum terelektrosadur lapisan nikel pada suhu tindak balas yang rendah dan tekanan atmosfera dikaji dalam penyelidikan ini. Pemangkin nikel disediakan dengan menggunakan kaedah elektropenyaduran dan ketumpatan arus yang berlainan, bagi menghasilkan lapisan pemangkin nikel dengan ketebalan dan saiz bijirin yang berbeza. Pertumbuhan terus CNS melalui kaedah pemendapan wap kimia (CVD) di atas elektrosadur lapisan pemangkin nikel telah dijalankan pada suhu tindak balas 600°C  dengan campuran 25 kepada 100 sccm bagi kadar pengaliran asetilena kepada nitrogen selama 40 minit. Lapisan pemangkin nikel elektrosadur pada ketumpatan arus paling rendah mengandungi saiz bjirin yang kecil dan ketebalan lapisan pemangkin nikel yang nipis menghasilkan pertumbuhan CNS yang berkualiti dan tumpat di samping nisbah CNT yang tinggi berbanding CNF.  

Kata kunci: Elektropenyaduran; nanostruktur karbon; pemangkin nikel; pemendapan wap kimia

 

REFERENCES

Badarulzaman, N.A., Mohamad, A.A., Purwadaria, S. & Ahmad, Z.A 2010. The evaluation of nickel deposit obtained via watts electrolyte at ambient temperature. Journal of Coatings Technology Research 7(6): 815–820.

Badarulzaman, N.A., Purwadaria, S., Mohamad, A.A. & Ahmad, Z.A. 2009. The production of nickel-alumina composite coating via electroplating. Ionics 15: 603-607.

Bakonyi, I., Tóth-Kádár, E., Pogány, L., Cziráki, A., Gerőcs, I., Varga-Josepovits, K., Arnold, B. & Wetzig, K. 1996. Preparation and characterization of D.c.-plated nanocrystalline nickel electrodeposits. Surface and Coatings Technology 78(1-3): 124–136.

Chen, C.M., Dai, Y.M., Huang, J.G. & Jehng, J.M. 2006. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44(9): 1808–1820.

Fischer, H. 2015. X-Ray fluorescences measuring system. http://xrf-spectroscopy.com. Accessed on 23rd February 2017.

Hashempour, M., Antonello, V., Zhao, F. & Bestetti, M. 2013. Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: Effect of surface nano-features on CNT growth and structure. Carbon 63: 330-347.

Hili, K., Fan, D., Guzenko, V.A. & Yasin, E. 2015. Nickel electroplating for high-resolution nanostructures. Microelectronic Engineering 141: 122–128.

Jourdain, V. & Bichara, C. 2013. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58: 2–39.

Kuljanishvili, I., Dikin, D.A., Rozhok, S., Mayle, S. & Chandrasekhar, V. 2009. Controllable patterning and CVD growth of isolated carbon nanotubes with direct parallel writing of catalyst using dip-pen nanolithography. Small 5(22): 2523. DOI: 10.1002/smll.200900841.

Kumar, M. & Yoshinori, A. 2010a. Carbon nanotube synthesis and growth mechanism. Nanotechnology Perceptions 6(1): 7–28.

Kumar, M. & Yoshinori, A. 2010b. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology 10(6): 3739–3758.

Li, J.D., Zhang, P., Wu, Y.H., Liu, Y.S. & Xuan, M. 2009. Uniformity study of nickel thin-film microstructure deposited by electroplating. Microsystem Technologies 15: 505–510.

Lin, W. & Wong, C.P. 2010. Applications of carbon nanomaterials as electrical interconnects and thermal interface materials. In Nano-Bio- Electronic, Photonic and MEMS Packaging, edited by Wong, C.P., Moon, K.S. & Li, Y. New York: Springer Science+Business Media LLC. pp. 87–138.

Ludvig, P., Calixto, J.M., Ladeira, L.O. & Gaspar, I.C.P. 2011. Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Materials 4(3): 575–584.

Luo, J.K., Pritschow, M., Flewitt, A.J., Spearing, S.M., Fleck, N.A. & Milne, W.I. 2006. Effects of process conditions on properties of electroplated Ni thin films for microsystem applications. Journal of the Electrochemical Society 153(10): D155–D161.

Makris, T.D., Giorgi, L., Giorgi, R., Lisi, N. & Salernitano, E. 2005. CNT growth on alumina supported nickel catalyst by thermal CVD. Diamond and Related Materials 14(3-7): 815–819.

Meyyapan, M. & Srivastava, D. 2007. Carbon Nanotubes. New York: Taylor & Francis Group.

Moshkalyov, S.A., Moreau, A.L.D., Guttiérrez, H.R., Cotta, M.A. & Swart, J.W. 2004. Carbon nanotubes growth by chemical vapor deposition using thin film nickel catalyst. Materials Science and Engineering B 112(2-3): 147–153.

Nayeb Sadeghi, S., Shafiekhani, A. & Vesaghi, M.A. 2012. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate. Iranian Journal of Physics Research 12(3): 37–243.

Radhakrishnan, J.K., Pandian, P.S., Padaki, V.C., Bhusan, H., Rao K.U.B., Xie, J., Abraham, J.K. & Varadan, V.K. 2009. Growth of multiwalled carbon nanotube arrays by chemical vapour deposition over iron catalyst and the effect of growth parameters. Applied Surface Science 255(12): 6325–6334.

Seah, C.M., Chai, S.P., Satoshi, I. & Mohamed, A.R. 2013. Parametric study of methane catalytic CVD into single-walled carbon nanotubes using spin-coated iron nanoparticles. Chemical Vapor Deposition 19(1-3): 53–60.

Seidel, R., Georg, S.D., Eugen, U., Andrew, P., Graham, M.L. & Franz, K. 2004. Chemical vapor deposition growth of single-walled carbon nanotubes at 600°C and a simple growth model. The Journal of Physical Chemistry B 108(6): 1888–1893.

Singh, M.K., Singh, P.P., Titus, E., Misra, D.S. & LeNormand, F. 2002. High density of multiwalled carbon nanotubes observed on nickel electroplated copper substrates by microwave plasma chemical vapor deposition. Chemical Physics Letters 354: 331–336.

Srivastava, S.K., Vankar, V.D., Kumar, V. & Singh, V.N. 2008. Effect of substrate morphology on growth and field emission properties of carbon nanotube films. Nanoscale Research Letters 3: 205–212.

Su, Y. & Zhang, Y. 2015. Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon 83: 90–99.

Teo, K.B.K. & Singh, C. 2003. Catalytic synthesis of carbon nanotubes and nanofibers. In Encyclopedia of Nanoscience and Nanotechnology, edited by Nalwa, H.S. Stevenson Ranch, CA: American Scientific Publishers. 10: 1–22.

Tripathi, N., Mishra, P., Harsh, H. & Islam, S.S. 2014. Fine-tuning control on CNT diameter distribution, length and density using thermal CVD growth at atmospheric pressure: An in-depth analysis on the role of flow rate and flow duration of acetylene (C2H2) gas. Applied Nanoscience 5(1): 19–28.

Uhm, Y.R., Park, K.Y. & Choi, S.J. 2015. The effects of current density and saccharin addition on the grain size of electroplated nickel. Research on Chemical Intermediates 41(7): 4141–4149.

Ul-Hamid, A., Quddus, A., Dafalla, H., Saricimen, H. & Al-Hadhrami, L. 2012. Electrochemical deposition of Ni on an Al-Cu alloy. Journal of Materials Engineering and Performance 21: 213–221.

Xiang, R., Zeng, H., Su, Y., Gui, X., Wu, T., Einarsson, E., Maruyama, S. & Tang, Z. 2013. Spray coating as a simple method to prepare catalyst for growth of diameter-tunable single-walled carbon nanotubes. Carbon 64: 537–540.

Zhang, Y., Ephraim, S. & Claire, G. 2010. Physical properties and mechanical behavior of carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs) as thermal interface materials (TIMs) for high-power integrated circuit (IC) packages: Review and extension. In Nano-Bio- Electronic, Photonic and MEMS Packaging, edited by Wong, C.P., Moon, K.S. & Li, Y. New York: Springer Science+Business Media LLC. pp. 315–347.

Zhao, N. & Jianli, K. 2011. Direct growth of carbon nanotubes on metal supports by chemical vapor deposition. In Carbon Nanotubes-Synthesis, Characterization, Applications, edited by Siva Yellampalli. https://www.intechopen.com/books/carbon-nanotubes-synthesis-characterization-applications/direct-growth-of-carbon-nanotubes-on-metal-supports-by-chemical-vapor-deposition.

 

*Corresponding author; email: chrahman@usm.my

 

 

 

 

previous