Sains Malaysiana 47(2)(2018): 393-402
http://dx.doi.org/10.17576/jsm-2018-4702-22
Effect of Nickel Catalyst Layer Thickness and Grain Size
Prepared by Electroplating Method to the Growth of Carbon
Nanostructures by Chemical Vapour Deposition
(Kesan terhadap Ketebalan Lapisan dan Saiz Bijian Pemangkin
Nikel Disedia dengan Kaedah Sadur Elektrik pada Pertumbuhan Karbon Nanostruktur
melalui Kaedah Pemendapan Wap Kimia)
Roszaini Md Salleh1, Wei-Ming Yeoh2,
Abdul Rahman Mohamed1* & Raihana Bahru1
1School
of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau
Pinang, Malaysia
2Department
Petrochemical Engineering, Faculty of Engineering and Green Technology,
Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar,
Perak Darul Ridzuan, Malaysia
Received:
26 March 2017/Accepted: 17 August 2017
ABSTRACT
A simple method of growing carbon nanostructures
(CNS), a mixture of carbon nanotube (CNT) and carbon nanofiber
(CNF), directly on a nickel catalyst layer electroplated on the
copper substrate at low reaction temperature and atmospheric pressure
via chemical vapor deposition (CVD) was investigated in this study.
The nickel catalyst was prepared using electroplating methods
and the current density was varied to give the nickel catalyst
layer with different thicknesses and grain sizes prior to the
growth of CNS which was carried out at 600°C and under a mixture of 25 sccm: 100 sccm
of acetylene to nitrogen for 40 min. A nickel catalyst layer electroplated
at 1 mA/cm2, which possess a smaller grain size and
thinner layer of nickel catalyst, enables the synthesis of high
quality and dense CNS as well as high ratio of CNT over CNF.
Keywords: Carbon nanostructures; chemical vapor deposition (CVD); electroplating; nickel catalyst layer
ABSTRAK
Kaedah mudah untuk
pertumbuhan terus nanostruktur karbon adalah gabungan antara nanotiub karbon dan nanoserabut
karbon di atas substrat kuprum terelektrosadur lapisan nikel pada
suhu tindak balas yang rendah dan tekanan atmosfera dikaji dalam
penyelidikan ini.
Pemangkin nikel disediakan dengan menggunakan kaedah elektropenyaduran
dan ketumpatan arus yang berlainan, bagi menghasilkan lapisan
pemangkin nikel dengan ketebalan dan saiz bijirin yang berbeza.
Pertumbuhan terus CNS melalui kaedah pemendapan wap kimia (CVD) di atas elektrosadur lapisan
pemangkin nikel telah dijalankan pada suhu tindak balas 600°C dengan campuran 25 kepada 100 sccm bagi
kadar pengaliran asetilena kepada nitrogen selama 40 minit. Lapisan
pemangkin nikel elektrosadur pada ketumpatan arus paling rendah
mengandungi saiz bjirin yang kecil dan ketebalan lapisan pemangkin
nikel yang nipis menghasilkan pertumbuhan CNS yang berkualiti
dan tumpat di samping
nisbah CNT yang tinggi berbanding CNF.
Kata kunci: Elektropenyaduran; nanostruktur karbon; pemangkin nikel; pemendapan wap kimia
REFERENCES
Badarulzaman,
N.A., Mohamad, A.A.,
Purwadaria, S. & Ahmad, Z.A 2010. The evaluation of nickel deposit obtained via watts electrolyte at ambient temperature. Journal of Coatings
Technology Research 7(6): 815–820.
Badarulzaman, N.A., Purwadaria, S.,
Mohamad, A.A. & Ahmad, Z.A. 2009. The production of nickel-alumina composite coating via electroplating. Ionics 15:
603-607.
Bakonyi, I., Tóth-Kádár, E., Pogány, L., Cziráki,
A., Gerőcs, I., Varga-Josepovits, K., Arnold, B. & Wetzig, K. 1996. Preparation and characterization of D.c.-plated nanocrystalline nickel electrodeposits. Surface and Coatings
Technology 78(1-3): 124–136.
Chen, C.M., Dai, Y.M., Huang, J.G. & Jehng, J.M. 2006. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44(9): 1808–1820.
Fischer,
H. 2015. X-Ray fluorescences measuring system. http://xrf-spectroscopy.com. Accessed on 23rd February 2017.
Hashempour, M., Antonello, V., Zhao, F. &
Bestetti, M. 2013. Direct
growth of MWCNTs on 316 stainless steel by chemical vapor
deposition: Effect of surface nano-features on CNT growth and structure. Carbon 63: 330-347.
Hili, K., Fan, D., Guzenko, V.A. &
Yasin, E. 2015. Nickel electroplating for high-resolution nanostructures. Microelectronic Engineering 141:
122–128.
Jourdain,
V. & Bichara, C. 2013. Current understanding of the growth
of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58: 2–39.
Kuljanishvili, I., Dikin, D.A., Rozhok,
S., Mayle, S. & Chandrasekhar, V. 2009. Controllable patterning
and CVD growth of isolated carbon nanotubes with direct parallel writing of catalyst
using dip-pen nanolithography. Small 5(22): 2523. DOI: 10.1002/smll.200900841.
Kumar, M. & Yoshinori, A. 2010a. Carbon nanotube synthesis
and growth mechanism. Nanotechnology
Perceptions 6(1): 7–28.
Kumar, M. & Yoshinori, A. 2010b. Chemical vapor deposition of carbon nanotubes:
A review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology 10(6): 3739–3758.
Li, J.D., Zhang, P., Wu, Y.H., Liu, Y.S. &
Xuan, M. 2009. Uniformity study of nickel thin-film microstructure deposited by electroplating. Microsystem Technologies 15:
505–510.
Lin,
W. & Wong, C.P. 2010. Applications of carbon nanomaterials
as electrical interconnects and thermal interface materials. In Nano-Bio- Electronic, Photonic and MEMS
Packaging, edited by Wong, C.P., Moon, K.S. & Li, Y. New York: Springer
Science+Business Media LLC. pp. 87–138.
Ludvig, P., Calixto, J.M., Ladeira, L.O. &
Gaspar, I.C.P. 2011. Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Materials 4(3): 575–584.
Luo, J.K., Pritschow, M., Flewitt, A.J.,
Spearing, S.M., Fleck, N.A. & Milne, W.I. 2006. Effects of process conditions on properties
of electroplated Ni thin films for microsystem applications. Journal of the Electrochemical Society 153(10):
D155–D161.
Makris, T.D., Giorgi, L., Giorgi, R.,
Lisi, N. & Salernitano, E. 2005. CNT growth on alumina supported nickel catalyst by thermal
CVD. Diamond and Related Materials 14(3-7): 815–819.
Meyyapan, M. & Srivastava, D. 2007. Carbon
Nanotubes. New York: Taylor & Francis Group.
Moshkalyov, S.A., Moreau, A.L.D.,
Guttiérrez, H.R., Cotta, M.A. & Swart, J.W. 2004. Carbon nanotubes
growth by chemical vapor deposition using thin film nickel catalyst. Materials Science and Engineering B 112(2-3): 147–153.
Nayeb Sadeghi, S., Shafiekhani, A. &
Vesaghi, M.A. 2012. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical
vapor deposition on Ni catalyst electroplated on a copper substrate. Iranian Journal of Physics Research 12(3): 37–243.
Radhakrishnan,
J.K., Pandian, P.S., Padaki, V.C., Bhusan, H., Rao K.U.B., Xie, J., Abraham,
J.K. & Varadan, V.K. 2009. Growth of multiwalled carbon nanotube arrays by
chemical vapour deposition over iron catalyst and the effect of growth
parameters. Applied Surface Science 255(12): 6325–6334.
Seah,
C.M., Chai, S.P., Satoshi, I. & Mohamed, A.R. 2013. Parametric
study of methane catalytic CVD into single-walled carbon nanotubes using
spin-coated iron nanoparticles. Chemical
Vapor Deposition 19(1-3): 53–60.
Seidel, R., Georg, S.D., Eugen, U.,
Andrew, P., Graham, M.L. & Franz, K. 2004. Chemical vapor
deposition growth of single-walled carbon nanotubes at 600°C and a simple
growth model. The Journal of
Physical Chemistry B 108(6): 1888–1893.
Singh, M.K., Singh, P.P., Titus, E.,
Misra, D.S. & LeNormand, F. 2002. High density of multiwalled carbon nanotubes observed on
nickel electroplated copper substrates by microwave plasma chemical vapor
deposition. Chemical Physics Letters 354: 331–336.
Srivastava,
S.K., Vankar, V.D., Kumar, V. & Singh, V.N. 2008. Effect
of substrate morphology on growth and field emission properties of carbon
nanotube films. Nanoscale Research
Letters 3: 205–212.
Su,
Y. & Zhang, Y. 2015. Carbon nanomaterials synthesized by arc discharge hot
plasma. Carbon 83: 90–99.
Teo,
K.B.K. & Singh, C. 2003. Catalytic synthesis of carbon
nanotubes and nanofibers. In Encyclopedia
of Nanoscience and Nanotechnology, edited by Nalwa, H.S. Stevenson Ranch, CA: American Scientific Publishers. 10: 1–22.
Tripathi, N., Mishra, P., Harsh, H. &
Islam, S.S. 2014. Fine-tuning control on CNT diameter distribution, length and density using thermal
CVD growth at atmospheric pressure: An in-depth analysis on the role of flow rate
and flow duration of acetylene (C2H2) gas. Applied Nanoscience 5(1): 19–28.
Uhm,
Y.R., Park, K.Y. & Choi, S.J. 2015. The effects of current density and saccharin
addition on the grain size of electroplated nickel. Research on Chemical Intermediates 41(7): 4141–4149.
Ul-Hamid, A., Quddus, A., Dafalla, H.,
Saricimen, H. & Al-Hadhrami, L. 2012. Electrochemical deposition of Ni on an
Al-Cu alloy. Journal of Materials
Engineering and Performance 21: 213–221.
Xiang, R., Zeng, H., Su, Y., Gui, X., Wu,
T., Einarsson, E., Maruyama, S. & Tang, Z. 2013. Spray coating as a simple method to prepare
catalyst for growth of diameter-tunable single-walled carbon nanotubes. Carbon 64: 537–540.
Zhang,
Y., Ephraim, S. & Claire, G. 2010. Physical properties and mechanical behavior
of carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs) as thermal interface materials
(TIMs) for high-power integrated circuit (IC) packages: Review and extension. In Nano-Bio- Electronic, Photonic and MEMS
Packaging, edited by Wong, C.P., Moon, K.S. & Li, Y. New York: Springer
Science+Business Media LLC. pp. 315–347.
Zhao,
N. & Jianli, K. 2011. Direct growth of carbon nanotubes on metal supports
by chemical vapor deposition. In Carbon
Nanotubes-Synthesis, Characterization, Applications, edited by Siva Yellampalli.
https://www.intechopen.com/books/carbon-nanotubes-synthesis-characterization-applications/direct-growth-of-carbon-nanotubes-on-metal-supports-by-chemical-vapor-deposition.
*Corresponding author; email: chrahman@usm.my