Sains Malaysiana 47(2)(2018): 409-417

http://dx.doi.org/10.17576/jsm-2018-4702-24

Meteorological Multivariable Approximation and Prediction with Classical VAR-DCC Approach

(Penghampiran Berbilang Pemboleh Ubah Meteorologi dan Jangkaan dengan Pendekatan Klasik VAR-DCC)

Siti Mariam Norrulashikin1, Fadhilah Yusof1* & Ibrahim Lawal Kane2

1Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

2Department of Mathematical and Computer Science, Umaru Musa Yar'adua University, Katsina State, Nigeria

 

Received: 7 February 2017/Accepted: 5 July 2017

ABSTRACT

 

The vector autoregressive (VAR) approach is useful in many situations involving model development for multivariables time series. VAR model was utilised in this study and applied in modelling and forecasting four meteorological variables. The variables are n rainfall data, humidity, wind speed and temperature. However, the model failed to address the heteroscedasticity problem found in the variables, as such, multivariate GARCH, namely, dynamic conditional correlation (DCC) was incorporated in the VAR model to confiscate the problem of heteroscedasticity. The results showed that the use of the VAR coupled with the recognition of time-varying variances DCC produced good forecasts over long forecasting horizons as compared with VAR model alone.

Keywords: Dynamic conditional correlation; forecast; meteorology; vector autoregressive

 

 

ABSTRAK

 

Pendekatan vektor autoregresif (VAR) adalah berguna dalam pelbagai keadaan yang melibatkan pembangunan model berbilang siri masa pemboleh ubah. Model VAR digunakan dalam kajian ini dan diaplikasi dalam pemodelan dan peramalan empat pemboleh ubah meteorologi. Pemboleh ubah ini adalah data hujan n, kelembapan, kelajuan angin dan suhu. Walau bagaimanapun, model ini gagal untuk menangani masalah heteroskedastisiti yang ditemui dalam pemboleh ubah, justeru, multivariat GARCH iaitu kolerasi dinamik bersyarat (DCC) telah dimasukkan pada model VAR untuk merampas masalah heteroskedastisiti. Keputusan menunjukkan bahawa penggunaan VAR ditambah pula dengan pengiktirafan daripada variasi perbezaan masa DCC menghasilkan peramalan yang baik ke atas peramalan panjangberbanding model VAR semata-mata.

Kata kunci: Korelasi dinamik bersyarat; meteorologi; ramalan; vektor autoregresif

REFERENCES

Benth, F.E. & Benth, J.S. 2007. The volatility of temperature and pricing of weather derivatives. Quantitative Finance 7(5): 553-561. doi:10.1080/14697680601155334.

Benth, J.Š., Benth, F.E. & Jalinskas, P. 2007. A spatial-temporal model for temperature with seasonal variance. Journal of Applied Statistics 34(5): 823-841. doi:10.1080/02664760701511398.

Bollerslev, T. 1990. Modelling the coherence in short-run nominal exchange rates: A multivariate generalized arch model. The Review of Economics and Statistics 72(3): 498-505.

Box, G.E.P. & Jenkins, G.M. 1971. Time series analysis forecasting and control. Operational Research Quarterly 22(2): 199-201.

Brown, R.L., Durbin, J. & Evans, J.M. 1975. Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society 37(2): 149-192.

Calvin, K., Clarke, L., Krey, V., Blanford, G., Jiang, K., Kainuma, M., Kriegler, E., Luderer, G. & Shukla, P.R. 2012. The role of Asia in mitigating climate change: Results from the Asia modeling exercise. Energy Economics 34(Suppl. 3). Elsevier B.V.: S251-60. doi:10.1016/j.eneco.2012.09.003.

Campbell, S.D. & Diebold, F.X. 2005. Weather forecasting for weather derivatives. Journal of the American Statistical Association 100(469): 6-16. doi:10.1198/016214504000001051.

Chakraborty, K., Mehrotra, K., Mohan, C.K. & Ranka, S. 1992. Forecasting the behavior of multivariate time series using neural networks. Neural Networks 5(6): 961-970. doi:10.1016/S0893-6080(05)80092-9.

Chen, N., Qian, Z., Meng, X. & Nabney, I.T. 2013. Short-term wind power forecasting using Gaussian processes. In 23rd International Joint Conference on Artificial Intelligence. Beijing, China.

Dickey, D.A. & Fuller, W.A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74(366): 427-431.

Engle, R. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics 20(3): 339-350. doi:10.1198/073500102288618487.

Engle, R.F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4): 987-1007.

Erdem, E. & Shi, J. 2011. ARMA based approaches for forecasting the tuple of wind speed and direction. Applied Energy 88(4): 1405-1414. doi:10.1016/j.apenergy.2010.10.031.

Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M. & Draxl, C. 2011. The state-of-the-art in short-term prediction of wind power. In Development of a Next Generation Wind Resource Forecasting System for the Large-Scale Integration of Onshore and Offshore Wind Farms. Project ANEMOS. pp. 1-36.

Granger, C.W.J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3): 424-438. doi:10.2307/1912791.

Granger, C.W.J. & Newbold, P. 1986. Forecasting Time Series. New York: Academic Press.

Heinemann, D., Lorenz, E. & Girodo, M. 2006. Forecasting of solar radiation. In Solar Energy Resource Management for Elitricity Generation from Local Level to Global Scale. pp. 83-94. doi:10.1016/j.solener.2006.09.009.

Intergovernmental Panel on Climate Change. 2014. Climate Change 2014: Synthesis Report.

Johansen, S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12(2-3): 231-254. doi.org/10.1016/0165-1889(88)90041-3.

Li, G. & Shi, J. 2010. On comparing three artificial neural networks for wind speed forecasting. Applied Energy 87(7): 2313-2320. doi:10.1016/j.apenergy.2009.12.013.

Liu, Y., Roberts, M.C. & Sioshansi, R. 2014. A vector autoregression weather model for electricity supply and demand modeling. http://spotidoc.com/doc/1341173/a-vector-autoregression-weather-model-for-electricity-sup.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Misztal, P. 2010. Foreign direct investments as a factor for economic growth in Romania. Review of Economic and Business Studies (REBS) 3: 39-53.

Norrulashikin, Siti Mariam, Fadhilah Yusof & Ibrahim Lawal Kane. 2015. An investigation towards the suitability of vector autoregressive approach on modeling meteorological data. Modern Applied Science 9(11): 89-100. doi:10.5539/mas.v9n11p89.

Oetomo, T. & Stevenson, M. 2004. Hot or cold?: A comparison of different approaches to the pricing of weather derivatives. Journal of Emerging Markets Finance 4(2): 101-133.

Remund, J., Perez, R. & Lorenz, E. 2008. Comparison of solar radiation forecasts for the USA. In European PV Conference 2: 3-5. http://www.task34.iea-shc.org/data/sites/1/publications/Comparison_of_USA_radiation_forecasts.pdf.

Sclip, A., Dreassi, A., Miani, S. & Paltrinieri, A. 2016. Dynamic correlations and volatility linkages between stocks and sukuk: Evidence from international markets. Review of Financial Economics. 31: 34-44. doi:10.1016/j.rfe.2016.06.005.

Svec, J. & Stevenson, M. 2007. Modelling and forecasting temperature based weather derivatives. Global Finance Journal 18(2): 185-204. doi:10.1016/j.gfj.2006.04.006.

Taylor, J.W. & Buizza, R. 2006. Density forecasting for weather derivative pricing. International Journal of Forecasting 22(1): 29-42. doi:10.1016/j.ijforecast.2005.05.004.

Taylor, J.W. & Buizza, R. 2004. A comparison of temperature density forecasts from GARCH and atmospheric models. Journal of Forecasting23(5): 337-355.

Tiao, G.C. & Tsay, R.S. 1989. Model specification in multivariate time series. Journal of the Royal Statistical Society 51(2): 157-213.

Tong, H. 1990. Non-linear Time Series: A Dynamical System Approach. Oxford: Oxford University Press.

Tong, H. 1983. Threshold Models in Nonlinear Time Series Analysis. New York: Springer-Verlag.

Traiteur, J.J., Callicutt, D.J., Smith, M. & Roy, S.B. 2011. A short-term ensemble wind-speed forecasting system for wind power applications. American Meteorological Society. doi:10.1017/CBO9781107415324.004.

Tsay, R.S. 2014. Multivariate Time Series Analysis with R and Financial Applications. Statewide Agricultural Land Use Baseline 2015. Vol. 1. New York: John Wiley & Sons. doi:10.1017/CBO9781107415324.004.

Wong, J.M.W., Chan, A.P.C. & Chiang, Y.H. 2007. Forecasting construction manpower demand: A vector error correction model. Building and Environment 42(8): 3030-3041. doi:10.1016/j.buildenv.2006.07.024.

Yusof, F. & Kane, I.L. 2013. Volatility modeling of rainfall time series. Theoretical and Applied Climatology 113(1-2): 247-258. doi:10.1007/s00704-012-0778-8.

 

*Corresponding author; email: fadhilahy@utm.my

 

 

 

 

previous