Sains
Malaysiana 47(2)(2018): 409-417
http://dx.doi.org/10.17576/jsm-2018-4702-24
Meteorological Multivariable Approximation and
Prediction with Classical VAR-DCC Approach
(Penghampiran
Berbilang Pemboleh Ubah Meteorologi dan Jangkaan dengan
Pendekatan Klasik
VAR-DCC)
Siti
Mariam Norrulashikin1, Fadhilah Yusof1*
& Ibrahim Lawal Kane2
1Department of Mathematical Science,
Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
2Department of Mathematical and Computer
Science, Umaru Musa Yar'adua
University, Katsina State, Nigeria
Received:
7 February 2017/Accepted: 5 July 2017
ABSTRACT
The vector autoregressive (VAR) approach is useful in many
situations involving model development for multivariables time
series. VAR model was utilised in this study and applied in modelling
and forecasting four meteorological variables. The variables are
n rainfall data, humidity, wind speed and temperature. However,
the model failed to address the heteroscedasticity problem found
in the variables, as such, multivariate GARCH, namely, dynamic
conditional correlation (DCC) was incorporated in the VAR model
to confiscate the problem of heteroscedasticity. The results showed
that the use of the VAR coupled with the recognition of time-varying
variances DCC produced good forecasts over long forecasting horizons
as compared with VAR model alone.
Keywords: Dynamic conditional correlation; forecast;
meteorology; vector autoregressive
ABSTRAK
Pendekatan vektor autoregresif (VAR) adalah berguna dalam pelbagai keadaan yang melibatkan pembangunan model
berbilang siri masa pemboleh ubah. Model VAR digunakan dalam kajian
ini dan diaplikasi dalam pemodelan dan peramalan empat pemboleh ubah meteorologi. Pemboleh ubah ini adalah data hujan n, kelembapan, kelajuan angin dan suhu. Walau
bagaimanapun, model ini gagal untuk menangani masalah heteroskedastisiti yang ditemui dalam pemboleh ubah, justeru, multivariat GARCH
iaitu kolerasi dinamik bersyarat (DCC) telah dimasukkan pada model VAR untuk merampas masalah heteroskedastisiti. Keputusan menunjukkan bahawa penggunaan
VAR ditambah pula dengan pengiktirafan daripada variasi perbezaan masa DCC menghasilkan peramalan yang baik ke atas peramalan panjangberbanding model VAR semata-mata.
Kata kunci: Korelasi dinamik bersyarat; meteorologi; ramalan; vektor autoregresif
REFERENCES
Benth, F.E. & Benth, J.S. 2007. The volatility of temperature and
pricing of weather derivatives. Quantitative Finance 7(5): 553-561.
doi:10.1080/14697680601155334.
Benth, J.Š., Benth, F.E. & Jalinskas, P. 2007.
A spatial-temporal model for temperature with seasonal variance. Journal of
Applied Statistics 34(5): 823-841. doi:10.1080/02664760701511398.
Bollerslev, T. 1990. Modelling the coherence in short-run
nominal exchange rates: A multivariate generalized arch model. The Review of
Economics and Statistics 72(3): 498-505.
Box, G.E.P. &
Jenkins, G.M. 1971. Time series analysis forecasting and control.
Operational Research Quarterly 22(2): 199-201.
Brown, R.L., Durbin, J. & Evans, J.M. 1975.
Techniques for testing the constancy of regression relationships over time. Journal
of the Royal Statistical Society 37(2): 149-192.
Calvin, K., Clarke, L., Krey, V., Blanford, G.,
Jiang, K., Kainuma, M., Kriegler, E., Luderer, G. & Shukla, P.R. 2012. The
role of Asia in mitigating climate change: Results from the Asia modeling
exercise. Energy Economics 34(Suppl. 3). Elsevier B.V.: S251-60.
doi:10.1016/j.eneco.2012.09.003.
Campbell, S.D. & Diebold, F.X. 2005. Weather
forecasting for weather derivatives. Journal of the American Statistical
Association 100(469): 6-16. doi:10.1198/016214504000001051.
Chakraborty, K., Mehrotra, K., Mohan, C.K. &
Ranka, S. 1992. Forecasting the behavior of multivariate time series using
neural networks. Neural Networks 5(6): 961-970.
doi:10.1016/S0893-6080(05)80092-9.
Chen, N., Qian, Z., Meng, X. & Nabney, I.T.
2013. Short-term wind power forecasting using Gaussian processes. In 23rd
International Joint Conference on Artificial Intelligence. Beijing, China.
Dickey, D.A. & Fuller, W.A. 1979. Distribution
of the estimators for autoregressive time series with a unit root. Journal
of the American Statistical Association 74(366): 427-431.
Engle, R. 2002. Dynamic conditional correlation: A
simple class of multivariate generalized autoregressive conditional
heteroskedasticity models. Journal of Business & Economic Statistics 20(3): 339-350. doi:10.1198/073500102288618487.
Engle, R.F. 1982.
Autoregressive conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica
50(4): 987-1007.
Erdem, E. & Shi, J. 2011. ARMA based approaches
for forecasting the tuple of wind speed and direction. Applied Energy 88(4): 1405-1414. doi:10.1016/j.apenergy.2010.10.031.
Giebel, G., Brownsword, R., Kariniotakis, G.,
Denhard, M. & Draxl, C. 2011. The state-of-the-art in short-term prediction
of wind power. In Development of a Next Generation
Wind Resource Forecasting System for the Large-Scale Integration of Onshore and
Offshore Wind Farms. Project ANEMOS. pp. 1-36.
Granger, C.W.J. 1969. Investigating causal relations
by econometric models and cross-spectral methods. Econometrica
37(3): 424-438. doi:10.2307/1912791.
Granger,
C.W.J. & Newbold, P. 1986. Forecasting Time Series.
New York: Academic Press.
Heinemann, D., Lorenz, E. & Girodo, M. 2006. Forecasting
of solar radiation. In Solar Energy Resource Management for
Elitricity Generation from Local Level to Global Scale. pp.
83-94. doi:10.1016/j.solener.2006.09.009.
Intergovernmental Panel on Climate Change. 2014. Climate
Change 2014: Synthesis Report.
Johansen, S.
1988. Statistical analysis of cointegration vectors. Journal
of Economic Dynamics and Control 12(2-3): 231-254. doi.org/10.1016/0165-1889(88)90041-3.
Li, G. & Shi, J. 2010. On comparing three
artificial neural networks for wind speed forecasting. Applied Energy 87(7): 2313-2320. doi:10.1016/j.apenergy.2009.12.013.
Liu, Y., Roberts, M.C. & Sioshansi, R. 2014. A
vector autoregression weather model for electricity supply and demand modeling.
http://spotidoc.com/doc/1341173/a-vector-autoregression-weather-model-for-electricity-sup.
Lütkepohl, H. 2005. New Introduction to Multiple
Time Series Analysis. New York: Springer.
Misztal, P. 2010. Foreign direct investments as a
factor for economic growth in Romania. Review of Economic and Business
Studies (REBS) 3: 39-53.
Norrulashikin, Siti Mariam, Fadhilah Yusof &
Ibrahim Lawal Kane. 2015. An investigation towards the suitability of vector
autoregressive approach on modeling meteorological data. Modern Applied
Science 9(11): 89-100. doi:10.5539/mas.v9n11p89.
Oetomo, T. & Stevenson, M. 2004. Hot or cold?:
A comparison of different approaches to the pricing of weather derivatives. Journal
of Emerging Markets Finance 4(2): 101-133.
Remund, J., Perez, R. & Lorenz, E. 2008.
Comparison of solar radiation forecasts for the USA. In European PV
Conference 2: 3-5.
http://www.task34.iea-shc.org/data/sites/1/publications/Comparison_of_USA_radiation_forecasts.pdf.
Sclip, A., Dreassi, A., Miani, S. & Paltrinieri,
A. 2016. Dynamic correlations and volatility linkages between
stocks and sukuk: Evidence
from international markets. Review of Financial Economics.
31: 34-44. doi:10.1016/j.rfe.2016.06.005.
Svec, J. & Stevenson, M. 2007. Modelling and forecasting
temperature based weather derivatives. Global Finance Journal
18(2): 185-204. doi:10.1016/j.gfj.2006.04.006.
Taylor, J.W. & Buizza, R. 2006. Density forecasting
for weather derivative pricing. International Journal of Forecasting
22(1): 29-42. doi:10.1016/j.ijforecast.2005.05.004.
Taylor, J.W. & Buizza, R. 2004. A comparison of
temperature density forecasts from GARCH and atmospheric models. Journal of
Forecasting23(5):
337-355.
Tiao, G.C. & Tsay, R.S. 1989.
Model specification in multivariate time series. Journal of
the Royal Statistical Society 51(2): 157-213.
Tong, H. 1990. Non-linear
Time Series: A Dynamical System Approach. Oxford: Oxford
University Press.
Tong, H. 1983. Threshold
Models in Nonlinear Time Series Analysis. New York: Springer-Verlag.
Traiteur, J.J., Callicutt, D.J., Smith, M. & Roy,
S.B. 2011. A short-term ensemble wind-speed forecasting system
for wind power applications. American Meteorological Society.
doi:10.1017/CBO9781107415324.004.
Tsay, R.S. 2014. Multivariate Time Series Analysis
with R and Financial Applications. Statewide Agricultural
Land Use Baseline 2015. Vol. 1. New York: John Wiley &
Sons. doi:10.1017/CBO9781107415324.004.
Wong, J.M.W., Chan, A.P.C. & Chiang, Y.H. 2007.
Forecasting construction manpower demand: A vector error correction
model. Building and Environment 42(8): 3030-3041. doi:10.1016/j.buildenv.2006.07.024.
Yusof, F. & Kane, I.L. 2013. Volatility
modeling of rainfall time series. Theoretical and Applied Climatology 113(1-2): 247-258. doi:10.1007/s00704-012-0778-8.
*Corresponding
author; email: fadhilahy@utm.my