Sains Malaysiana 47(3)(2018): 595–601

http://dx.doi.org/10.17576/jsm-2018-4703-21

 

Pemerhatian Arus Ionosfera semasa Suar Suria Kuat Menggunakan Data Magnetometer Dasar

(Observation of Ionospheric Current during Strong Solar Flare Using Ground Based Magnetometer)

 

N.M.N. ANNADURAI1, N.S.A. HAMID1* & A. YOSHIKAWA2,3

 

1Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Earth and Planetary Sciences, Faculty of Sciences, 33 Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

 

3International Center for Space Weather Science and Education (ICSWSE), Kyushu University, 53

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

 

Received: 3 August 2017/Accepted: 16 October 2017

 

ABSTRAK

Suar suria merujuk kepada aktiviti matahari yang ditafsirkan sebagai cahaya terang yang meletus secara tiba-tiba dari permukaan matahari. Ia mampu menjejaskan sistem ionosfera bumi justeru mengganggu mana-mana arus yang mengalir di lapisan tersebut. Kejadian ini dapat diperhatikan melalui pemerhatian data magnetometer yang dicerap di bumi. Kesan umum suar suria adalah peningkatan kekonduksian ionosfera seterusnya meningkatkan keamatan arus namun didapati terdapat beberapa suar suria mampu memberikan kesan sebaliknya. Terdapat kajian yang melaporkan bahawa satu suar suria mampu meningkatkan keamatan arus di sesetengah kawasan dan pengurangan keamatan pada kawasan yang lain. Kajian lepas pula lebih tertumpu kepada kesan suar suria pada kawasan sektor tertentu atau setempat. Walau bagaimanapun, kajian ini mengambil pendekatan untuk menganalisis sifat suar suria dan kesannya menggunakan taburan data yang lebih meluas iaitu melibatkan stesen magnetometer yang dipasang di lima sektor. Data yang digunakan adalah daripada jaringan Magnetic Data Acquisition System/Circum Pan Magnetometer Network Pacific (MAGDAS/CPMN) dan suar suria dikenal pasti melalui data fluks sinar-X yang dicerap daripada satelit Geostationary Operational Environmental Satellite 15 (GOES 15). Keputusan kajian menunjukkan kesan suar suria yang tidak pernah ditemui sebelum ini iaitu pengurangan keamatan arus pada semua data cerapan di khatulistiwa magnetik dan punca yang dicadangkan adalah kewujudan arus elektrojet berlawanan. Selain itu, keputusan kajian turut mendapati bahawa suar suria tersebut berlaku pada fasa pemulihan ribut geomagnet semasa soltis Jun dalam fasa suria menaik.

 

Kata kunci: Arus ionosfera; medan geomagnet; suar suria

 

ABSTRACT

Solar flare is referring to sun's activity define as sudden intense bright light coming from its surface. It can immediately affect earth's ionosphere system thus perturb any currents flowing in the layer. The activity can be monitored using ground based magnetometer data. Regularly, the event will enhance the ionospheric conductivity thus increase the magnitude of the currents however the opposite effect has been reported recently. There were studies reported that a solar flare is capable to increase current intensity at some location and reduces it at other location. Previous study were focused on solar flare effect at some particular area sector or locally. Therefore, our approach is to analyze solar flare feature and its effect using extensive magnetometer data distribution which involve stations from five sectors. Data are obtained from Magnetic Data Acquisition System/Circum-pan Pacific Magnetometer Network (MAGDAS/CPMN) and solar flare is identified using Geostationary Operational Environmental Satellite 15 (GOES 15) X-ray flux data. Our study discovered a new effect of solar flare which is reduction of current intensity at all magnetic equator data and the proposed factor is existence of counter electrojet current. Apart from that, we also found that this solar flare occurred on geomagnetic storm recovery phase during June solstice in inclining phase of solar cycle.

 

Keywords: Geomagnetic field; ionospheric current; solar flare

REFERENCES

Chapman, S. 1951. The equatorial electrojet as detected from the abnormal electric current distribution above Huacayo, Peru and elsewhere. Arch. Meteol. Geophys. Bioklimatol. 4(1): 368-390.

Hamid, N.S.A., Ismail, W.N.I. & Yoshikawa, A. 2017. Latitudinal variation of ionospheric currents in southeast Asian sector. Advanced Science Letters 23(2): 1444-1447.

Hamid, N.S.A., Liu, H., Uozumi, T. & Yoshikawa, A. 2015. Empirical model of equatorial electrojet based on ground-based magnetometer data during solar minimum in fall. Earth, Planets and Space 67: 205.

Hamid, N.S.A., Liu, H., Uozumi, T. & Yumoto, K. 2013. Solar activity dependence of equatorial jet current in Southeast Asia region. Antarctic Record 57(3): 329-337.

Ismail, W.N.I., Hamid, N.S.A., Abdullah, M., Yoshikawa, A. & Uozumi, T. 2017. Longitudinal variation of eej current during different phases of solar cycle. Journal of Physics: Conference Series 852, conference 1.

Nagata, T. 1952. Characteristics of the solar flare effect (Sqa) on geomagnetic field at Huancayo (Peru) and at Kakioka (Japan). Journal of Geophysical Research 57(1): 1-14.

Ning, B. & Li, G. 2014. Evidence of daytime 150-km echoes associated with the upper E region density gradient over Sanya. In General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI. pp. 1-1.

Okeke, F.N. 2006. A study of Sq (H) variations over equatorial electrojet regions. Journal of Physics 18(1): 45-52.

Onwumechili, C. 1997. The Equatorial Electrojet. Netherlands: Overseas Publishers Association. pp. 159-246.

Rabiu, A.B., Folarin, O.O., Uozumi, T., Hamid, N.S.A. & Yoshikawa, A. 2017. Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. Annales Geophysicae 35(3): 535-545.

Rastogi, R.G., Chandra, H. & Yumoto, K. 2013. Unique examples of solar flare effects in geomagnetic H field during partial counter electrojet along CPMN longitude sector. Earth Planets Space 65: 1027-1040.

Rastogi, R.G., Deshpande, M.R. & Sastri, N.S. 1975. Solar flare effect in equatorial counter electrojet currents. Nature 258: 218-219.

Rastogi, R.G. 1997. Midday reversal of equatorial ionospheric electric field. Annales Geophysicae 15: 1309-1315.

Rastogi, R.G., Pathan, B.M., Rao, D.R.K., Sastry, T.S. & Sastri, J.H. 1999. Solar flare effects on the geomagnetic elements during normal and counter electrojet periods. Earth Planets Space 51: 947-957.

Sastri, J.H. 1975. The geomagnetic solar are of 6 July 1968 and its implications. Ann. Geophys. 31: 481-485.

Shojanoori, R., Shafri, H.Z.M., Mansor, S. & Ismail, M.H. 2016. The use of worldview-2 satellite data in urban tree species mapping by object-based image analysis technique. Sains Malaysiana 45(7): 1025-1034.

Simon, N., de Roiste, M., Crozier, M. & Rafek, A.G. 2017. Representing landslides as polygon (areal) or points? how different data types influence the accuracy of landslide susceptibility maps. Sains Malaysiana 46(1): 27-34.

Thomas, N., Vichare, G. & Sinha, A.K. 2016. Spatial frequencies associated with the latitudinal structures of ionospheric currents seen by CHAMP satellite. Astrophysics and Space Science 361(7): 1-13.

Yamazaki, Y., Yumoto, K., Yoshikawa, A., Watari, S. & Utada, H. 2009. Characteristics of counter-Sq SFE (SFE*) at the dipequator CPMN stations. Journal of Geophysical Research 114: A05306.

Yamazaki, Y. & Maute, A. 2016. Sq and EEJ - A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. 206(1-4): 299-405.

 

*Corresponding author; email: shazana.ukm@gmail.com

 

 

 

previous