Sains Malaysiana 47(3)(2018): 595–601
http://dx.doi.org/10.17576/jsm-2018-4703-21
Pemerhatian Arus Ionosfera semasa Suar Suria
Kuat Menggunakan Data Magnetometer Dasar
(Observation of Ionospheric Current during
Strong Solar Flare Using Ground Based Magnetometer)
N.M.N. ANNADURAI1,
N.S.A.
HAMID1*
& A.
YOSHIKAWA2,3
1Pusat Pengajian Fizik Gunaan, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Department of Earth and Planetary
Sciences, Faculty of Sciences, 33 Kyushu University, 6-10-1 Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan
3International Center for Space Weather
Science and Education (ICSWSE), Kyushu University, 53
6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Received: 3 August 2017/Accepted: 16 October
2017
ABSTRAK
Suar suria merujuk kepada aktiviti
matahari yang ditafsirkan sebagai cahaya terang yang meletus secara tiba-tiba
dari permukaan matahari. Ia mampu menjejaskan sistem ionosfera bumi justeru
mengganggu mana-mana arus yang mengalir di lapisan tersebut. Kejadian ini dapat
diperhatikan melalui pemerhatian data magnetometer yang dicerap di bumi. Kesan
umum suar suria adalah peningkatan kekonduksian ionosfera seterusnya
meningkatkan keamatan arus namun didapati terdapat beberapa suar suria mampu
memberikan kesan sebaliknya. Terdapat kajian yang melaporkan bahawa satu suar
suria mampu meningkatkan keamatan arus di sesetengah kawasan dan pengurangan
keamatan pada kawasan yang lain. Kajian lepas pula lebih tertumpu kepada kesan
suar suria pada kawasan sektor tertentu atau setempat. Walau bagaimanapun,
kajian ini mengambil pendekatan untuk menganalisis sifat suar suria dan
kesannya menggunakan taburan data yang lebih meluas iaitu melibatkan stesen
magnetometer yang dipasang di lima sektor. Data yang digunakan adalah daripada
jaringan Magnetic Data Acquisition System/Circum Pan Magnetometer Network
Pacific (MAGDAS/CPMN) dan suar suria dikenal pasti melalui data
fluks sinar-X yang dicerap daripada satelit Geostationary Operational
Environmental Satellite 15 (GOES 15). Keputusan kajian
menunjukkan kesan suar suria yang tidak pernah ditemui sebelum ini iaitu
pengurangan keamatan arus pada semua data cerapan di khatulistiwa magnetik dan
punca yang dicadangkan adalah kewujudan arus elektrojet berlawanan. Selain itu,
keputusan kajian turut mendapati bahawa suar suria tersebut berlaku pada fasa
pemulihan ribut geomagnet semasa soltis Jun dalam fasa suria menaik.
Kata kunci: Arus ionosfera; medan
geomagnet; suar suria
ABSTRACT
Solar flare is referring to sun's activity
define as sudden intense bright light coming from its surface.
It can immediately affect earth's ionosphere system thus perturb
any currents flowing in the layer. The activity can be monitored
using ground based magnetometer data. Regularly, the event will
enhance the ionospheric conductivity thus increase the magnitude
of the currents however the opposite effect has been reported
recently. There were studies reported that a solar flare is
capable to increase current intensity at some location and reduces
it at other location. Previous study were focused on solar flare
effect at some particular area sector or locally. Therefore,
our approach is to analyze solar flare feature and its effect
using extensive magnetometer data distribution which involve
stations from five sectors. Data are obtained from Magnetic
Data Acquisition System/Circum-pan Pacific Magnetometer Network
(MAGDAS/CPMN)
and solar flare is identified using Geostationary Operational
Environmental Satellite 15 (GOES 15) X-ray flux data. Our study discovered a new effect
of solar flare which is reduction of current intensity at all
magnetic equator data and the proposed factor is existence of
counter electrojet current. Apart from that, we also found that
this solar flare occurred on geomagnetic storm recovery phase
during June solstice in inclining phase of solar cycle.
Keywords: Geomagnetic field; ionospheric current; solar flare
REFERENCES
Chapman, S.
1951. The equatorial electrojet as detected from the abnormal electric current
distribution above Huacayo, Peru and elsewhere. Arch. Meteol. Geophys. Bioklimatol. 4(1): 368-390.
Hamid,
N.S.A., Ismail, W.N.I. & Yoshikawa, A. 2017. Latitudinal variation of
ionospheric currents in southeast Asian sector. Advanced Science Letters 23(2): 1444-1447.
Hamid,
N.S.A., Liu, H., Uozumi, T. & Yoshikawa, A. 2015. Empirical model of
equatorial electrojet based on ground-based magnetometer data during solar
minimum in fall. Earth, Planets and Space 67: 205.
Hamid,
N.S.A., Liu, H., Uozumi, T. & Yumoto, K. 2013. Solar activity dependence of
equatorial jet current in Southeast Asia region. Antarctic Record 57(3): 329-337.
Ismail, W.N.I.,
Hamid, N.S.A., Abdullah, M., Yoshikawa, A. & Uozumi, T.
2017. Longitudinal variation of eej current during different
phases of solar cycle. Journal of Physics: Conference Series 852,
conference 1.
Nagata, T.
1952. Characteristics of the solar flare effect (Sqa) on geomagnetic
field at Huancayo (Peru) and at Kakioka (Japan). Journal
of Geophysical Research 57(1): 1-14.
Ning, B.
& Li, G. 2014. Evidence of daytime 150-km echoes associated with the upper
E region density gradient over Sanya. In General
Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI. pp. 1-1.
Okeke, F.N.
2006. A study of Sq (H) variations over equatorial electrojet regions. Journal of Physics 18(1): 45-52.
Onwumechili,
C. 1997. The Equatorial Electrojet. Netherlands: Overseas Publishers Association. pp. 159-246.
Rabiu, A.B.,
Folarin, O.O., Uozumi, T., Hamid, N.S.A. & Yoshikawa, A. 2017. Longitudinal
variation of equatorial electrojet and the occurrence of its counter
electrojet. Annales Geophysicae 35(3): 535-545.
Rastogi,
R.G., Chandra, H. & Yumoto, K. 2013. Unique examples of solar flare effects
in geomagnetic H field during partial counter electrojet along CPMN longitude
sector. Earth Planets Space 65:
1027-1040.
Rastogi,
R.G., Deshpande, M.R. & Sastri, N.S. 1975. Solar flare effect in equatorial
counter electrojet currents. Nature 258: 218-219.
Rastogi,
R.G. 1997. Midday reversal of equatorial ionospheric electric field. Annales Geophysicae 15: 1309-1315.
Rastogi,
R.G., Pathan, B.M., Rao, D.R.K., Sastry, T.S. & Sastri, J.H. 1999. Solar
flare effects on the geomagnetic elements during normal and counter electrojet
periods. Earth Planets Space 51: 947-957.
Sastri, J.H.
1975. The geomagnetic solar are of 6 July 1968 and its implications. Ann. Geophys. 31: 481-485.
Shojanoori,
R., Shafri, H.Z.M., Mansor, S. & Ismail, M.H. 2016. The use of worldview-2
satellite data in urban tree species mapping by object-based image analysis
technique. Sains Malaysiana 45(7):
1025-1034.
Simon, N.,
de Roiste, M., Crozier, M. & Rafek, A.G. 2017. Representing landslides as
polygon (areal) or points? how different data types influence the accuracy of
landslide susceptibility maps. Sains
Malaysiana 46(1): 27-34.
Thomas, N.,
Vichare, G. & Sinha, A.K. 2016. Spatial frequencies associated with the
latitudinal structures of ionospheric currents seen by CHAMP satellite. Astrophysics and Space Science 361(7):
1-13.
Yamazaki, Y., Yumoto,
K., Yoshikawa, A., Watari, S. & Utada, H. 2009. Characteristics of
counter-Sq SFE (SFE*) at the dipequator CPMN stations. Journal of Geophysical Research 114: A05306.
Yamazaki, Y. & Maute, A. 2016. Sq and
EEJ - A review on the daily variation of the geomagnetic field
caused by ionospheric dynamo currents. Space
Sci. Rev. 206(1-4): 299-405.
*Corresponding author; email:
shazana.ukm@gmail.com