Sains Malaysiana 47(3)(2018):
603–610
http://dx.doi.org/10.17576/jsm-2018-4703-22
FeCl3-Activated
Carbon Developed from Coconut Leaves: Characterization and
Application for Methylene Blue Removal
(Karbon Teraktif-FeCl3 daripada Daun Kelapa: Pencirian dan Aplikasi
terhadap Penyingkiran Metilena Biru)
RAMLAH ABD RASHID1,2*, ALI H. JAWAD1, MOHD AZLAN
BIN MOHD ISHAK2 & NUR NASULHAH KASIM2
1Faculty of Applied Sciences, Universiti Teknologi MARA, Shah
Alam Campus, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, Arau
Campus, 02600 Arau, Perlis Indera Kayangan, Malaysia
Received: 4 April 2017/Accepted: 13
October 2017
ABSTRACT
In this study,
coconut leaves were used as a starting material for the production
of activated carbon by thermal carbonization using FeCl3-activation
method. The characterization of coconut leaves-FeCl3
activated carbon (FAC) were evaluated by bulk density, ash content, moisture
content, point-of-zero charge (pHpzc)
analysis, iodine test, scanning electron microscopy (SEM),
Fourier transform infrared (FTIR) and elemental (CHNS-O)
analysis. The effect of the adsorbent dosage (0.02-0.25 g),
initial pH (3-11), initial dye concentrations (30-350 mg/L)
and contact time (1-180 min) on the adsorption of the methylene
blue (MB) at 303 K was performed via
batch experiments. The Pseudo-Second Order (PSO)
describes the kinetic model well whereas the Langmuir isotherm
proved that adsorption behavior at equilibrium with maximum
adsorption capacity (qmax)
of 66.00 mg/g.
Keywords:
Activated carbon; adsorption; coconut leaves; ferric chloride; methylene blue;
thermal activation
ABSTRAK
Dalam kajian
ini, daun kelapa telah dipilih sebagai bahan pemula bagi penghasilan
karbon teraktif melalui penkarbonan haba dengan menggunakan
FeCl3
sebagai agen pengaktif. Pencirian karbon teraktif
(FAC)
dianalisis dengan menggunakan mikroskop imbasan elektron (SEM),
transformasi Fourier inframerah (FTIR) dan analisis elemen (CHNS-O).
Beberapa parameter yang mempengaruhi penyahwarnaan metilena
biru pada suhu 303 K seperti dos bahan penjerap (0.02-0.25
g), pH awal (3-11), kepekatan (30-350 mg/L) dan masa (0-180
min) telah dikaji dan dioptimumkan dengan menggunakan kaedah
uji kaji berkumpulan. Model kinetik Pseudo-Pertama dan Pseudo-Kedua
telah digunakan untuk menganalisis mekanisme yang terlibat
dalam proses penjerapan. Nilai korelasi
(R2)
yang ditunjukkan oleh FAC terhadap model kinetik tertib Pseudo-
Kedua lebih tinggi berbanding tertib Pseudo-Pertama.
Data isoterma penjerapan dikaji dengan model isoterma seperti Langmuir,
Freundlich dan Temkin. Proses penjerapan dikenal pasti
mengikuti model Langmuir dengan kapasiti penjerapan maksimum
(qmax)
dicapai sebanyak 66.00 mg/g.
Kata kunci:
Daun kelapa; ferik klorida; karbon teraktif; metilena biru; pengaktifan haba;
penjerapan
REFERENCES
Abdullah, A.H., Kasim, A., Zainal, Z., Hussien, M.Z., Kuang,
D., Ahmad, F. & Wooi, O.S. 2001. Preparation and characterization of activated
carbon from Gelam Wood bark (Melaleuca cajuputi). Malays. J. Anal.
Sci. 7(1): 65-68.
Acosta,
R., Fierro, V., de Yuso, A.M., Nabarlatz, D. & Celzard, A. 2016.
Tetracycline adsorption onto activated carbons produced by KOH activation of
tyre pyrolysis char. Chemosphere 149: 168-176.
Ahmed,
M.J. & Dhedan, S.K. 2012. Equilibrium isotherms and kinetics modeling of
methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 317: 9-14.
Akbal,
F. 2005. Adsorption of basic dyes from aqueous solution onto
pumice powder. J. Colloid Interface Sci. 286: 455-458.
ASTM
D4607-14, Standard Test Method for Determination of Iodine Number of
Activated Carbon, ASTM International, West Conshohocken, PA, 2014,
www.astm.org.
Balakrishnan,
M. & Satyawali, Y. 2007. Removal of color from biomethanated distillery
spentwash by treatment with activated carbons. Bioresour. Technol. 98:
2629-2635.
Baseri,
J.R., Palanisamy, P.N. & Sivakumar, P. 2012. Preparation and
characterization of activated carbon from Thevetia peruviana for the
removal of dyes from textile waste water. Adv. Appl. Sci. Res. 3(1):
377-383.
Benadjemia, M., Millière, L., Reinert, L., Benderdouche, N.
& Duclaux, L. 2011. Preparation, characterization and methylene blue adsorption
of phosphoric acid activated carbons from globe artichoke leaves. Fuel
Process. Technol. 92(6): 1203-1212.
Bhatnagar, A., Sillanpää, M. & Witek-Krowiak, A. 2015. Agricultural waste
peels as versatile biomass for water purification-A review. Chem. Eng. J. 270:
244-271.
Bhatnagar, A. & Sillanpää, M. 2010. Utilization
of agro-industrial and municipal waste materials as potential adsorbents for
water treatment-A review. Chem. Eng. J. 157(23): 277- 296.
Bonomo,
L. 2008. Wastewater Treatment. Italy: McGraw Hill Education. p. 637.
Cazetta,
A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins,
A.C., Silva, T.L., Moraes, J.C.G. & Almeida, V.C. 2011. NaOH-activated
carbon of high surface area produced from coconut shell: Kinetics and
equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174:
117-125.
Etim,
U.J., Umoren, S.A. & Eduok, U.M. 2016. Coconut coir dust
as a low cost adsorbent for the removal of cationic dye from aqueous solution. J. of Saudi Chem. Soc. 20(1): S67-S76.
Freundlich,
H.M.F. 1906. Over the adsorption in solution. J.
Phys. Chem. 57: 385-470.
Fan, L., Zhou, Y., Yang, W., Chen, G. & Yang, F. 2008. Electrochemical
degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic
model. Dyes Pigm. 76: 440-446.
Gao, L., Dong, F.Q., Dai, Q.W., Zhong, G.Q., Halik, U. &
Lee, D.J. 2016. Coal tar residues based activated carbon: Preparation and characterization. J.
Taiwan Inst. Chem. Eng. 63: 166-169.
Garg,
V.K., Kumar, R. & Gupta, R. 2004. Removal of malachite green dye from
aqueous solution by adsorption using agro-industry waste: A case study of Prosopis
cineraria. Dyes Pigm. 62(1): 1-10.
Gupta,
V.K. 2009. Application of low-cost adsorbents for dye removal - A review. J.
Environ. Manage. 90: 2313-2342.
De Gisi, S., Lofrano, G., Grassi, M. & Notarnicola, M.
2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater
treatment: A review. Sustain. Mater. Technol. 9: 10-40.
Hamdaoui, O. & Chiha, M. 2007. Removal
of methylene blue from aqueous solutions by wheat bran. Acta Chimica
Slovenica 54(2): 407-418.
Isah, U., Abdulraheem, G., Bala, S., Muhammad, S. &
Abdullahi, M. 2015. Kinetics, equilibrium and thermodynamics studies of C.I.
reactive blue 19 dye adsorption on coconut shell based activated carbon. Int.
Biodeterior. Biodegrad. 102: 265-273.
Jawad, A.H., Ishak, M.A.M., Farhan, A.M. & Ismail, K.
2017a. Response surface methodology approach for optimization of color removal and COD
reduction of methylene blue using microwave-induced NaOH activated carbon from
biomass waste. Desalin. Water Treat. 62: 208-220.
Jawad, A.H., Rashid, R.A., Ismail, K. & Sabar, S. 2017b. High surface area
mesoporous activated carbon developed from coconut leaf by chemical activation
with H3PO4 for
adsorption of methylene blue. Desalin. Water Treat. 74: 326-335.
Jawad, A.H., Islam, M.A. & Hameed, B.H. 2017c. Cross-linked chitosan
thin film coated onto glass plate as an effective adsorbent for adsorption of
reactive orange 16. Int. J. Biol. Macromolec. 95: 743-749.
Jawad, A.H., Mamat, N.F.H., Abdullah, M.F. & Ismail, K.
2017d. Adsorption of methylene blue onto acid-treated mango peels: Kinetic,
equilibrium and thermodynamic. Desalin. Water Treat. 59: 210-219.
Jawad, A.H., Mubarak, N.S.A. & Nawawi, W.I. 2016a. Optimization
of sorption parameters for color removal of textile dye by cross-linked
chitosan beads using box- Behnken design. MATEC Web of Conferences 47:
05009.
Jawad, A.H., Rashid, R.A., Mahmuod, R.M.A., Ishak, M.A.M.,
Kasim, N.N. & Ismail, K. 2016b. Adsorption of methylene blue onto coconut (Cocos
nucifera) leaf: Optimization, isotherm and kinetic studies. Desalin.
Water Treat. 57: 8839-8853.
Jawad, A.H., Mubarak, N.S.A., Ishak, M.A.M., Ismail, K.
& Nawawi, W.I. 2016c. Kinetics of photocatalytic decolourization
of cationic dye using porous TiO2 film. J. Taibah Univ. Sci. 10(3): 352-362.
Jawad, A.H., Rashid, R.A., Ishak, M.A.M. & Wilson, L.D.
2016d. Adsorption of methylene blue onto activated carbon developed from biomass waste
by H2SO4 activation:
Kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 57:
25194-25206.
Jawad,
A.H., Alkarkhi, A.F.M. & Mubarak, N.S.A. 2015. Photocatalytic
decolorization of methylene blue by an immobilized TiO2 film
under visible light irradiation: Optimization using response surface
methodology (RSM). Desalin. Water Treat. 56: 161-172.
Johari, K., Saman, N., Song, S.T., Chin, C.S., Kong, H.
& Mat, H. 2016. Adsorption enhancement of elemental mercury by various
surface modified coconut husk as eco-friendly low-cost adsorbents. Int.
Biodeterior. Biodegrad. 109: 45-52.
Khataee,
A.R., Movafeghi, A., Torbati, S., SalehiLisar, S.Y. & Zarei, M. 2012. Phytoremediation
potential of duckweed (Lemna minor L.) in degradation of C.I.
acid blue 92: Artificial neural network modeling. Ecotoxicol. Environ. Saf.
80: 291-298.
Langmuir, I. 1918. The
adsorption of gases on pane surfaces of glass, mica and platinum. J.
Am. Chem. Soc. 40: 1361-1403.
Lata, H., Garg ,V.K.
& Gupta, R.K. 2007. Removal of a basic dye from aqueous solution by
adsorption using parthenium hysterophorus: An agricultural waste. Dye.
Pigment 74(3): 653-658.
Liu, Q.S., Zheng, T.,
Li, N., Wang, P. & Abulikemu, G. 2016. Modification of bamboo-based activated
carbon using microwave radiation and its effects on the adsorption of methylene
blue. Appl. Surface Sci. 256: 3309-3315.
Lopez-Ramon, M.V.,
Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marin, F. 1999. On the characterization of acidic and
basic surface sites on carbons by various techniques. Carbon 37(8):
1215-1221.
Naeem, S., Baheti, V.,
Militky, J., Wiener, J., Behera, P. & Ashraf, A. 2016. Sorption properties of iron impregnated
activated carbon web for removal of methylene blue from aqueous media. Fibers
and Polymers 17(8): 1245-1255.
Marrakchi, F., Ahmed,
M.J., Khanday, W.A., Asif, M. & Hameed, B.H. 2017. Mesoporous activated carbon prepared
from chitosan flakes via single-step sodium hydroxide activation for the
adsorption of methylene blue. Int. J. Biol. Macromol. 98: 233-239.
Mubarak, N.S.A., Jawad,
A.H. & Nawawi, W.I. 2017. Equilibrium, kinetic and thermodynamic studies of reactive red 120 dye
adsorption by chitosan beads from solution. Energ. Ecol. Environ. 2:
85-93.
Ncibi, M.C., Mahjoub,
B. & Seffen, M. 2007. Kinetic and equilibrium studies of methylene blue biosorption by Posidonia
oceanica (L.) fibres. J. Hazard. Mater. 139(2): 280-285.
Njoku, V.O., Islam, M.A., Asif, M. &
Hameed, B.H. 2014. Preparation of mesoporous activated carbon from coconut
frond for the adsorption of carbofuran insecticide. J. Anal. Appl. Pyrolysis 110: 172-180.
Oliveira, L.C.,
Pereira, E., Guimaraes, I.R., Vallone, A., Pereira, M., Mesquita, J.P. &
Sapag, K. 2009. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 165: 87-94.
Rashid, R.A., Jawad, A.H., Ishak, M.A.M.
& Kasim, N.N. 2016. KOH-activated carbon developed from
biomass waste: Adsorption equilibrium, kinetic and thermodynamic
studies for methylene blue uptake. Desalin. Water Treat.
57: 27226-27236.
Reffas, A., Bernardet,
V., David, B., Reinert, L., Lehocine, M.B., Dubois, M., Batisse, N. &
Duclaux, L. 2010. Carbons prepared from coffee grounds by H3PO4 activation:
Characterization and adsorption of methylene blue and nylosan red N-2RBL. J.
Hazard. Mater. 175: 779-788.
Shah, I., Adnan, R.,
Ngah, W. & Norita, M. 2015. Iron impregnated activated carbon as an efficient adsorbent for the removal of
methylene blue: Regeneration and kinetics studies. PLoS ONE 10(4):
e0122603.
Shah, I., Ngah, R.,
Mohammed, N. & Yap, Y. 2014. A new insight to the physical interpretation of activated carbon and iron doped
carbon material: Sorption affinity towards organic dyes. Bioresource Technol.
160: 52-56.
Somasekhara Rao, K.,
Prasad, N.V.V.S., Ram Babu, C., Kishore, M., Ravi, M. & Krishna Vani, K.
2005. Preparation and characterization of low cost adsorbent carbons. Chem. Environ. Res. 14 (1&2): 129-135.
Temkin, M.J. & Pyzhev, V. 1940. Recent modification to Langmuir isotherms. Acta Physiochemical
USSR 12: 217- 222.
Uçar, S., Erdem, M., Tay, T. &
Karagöz, S. 2009. Preparation and characterization of activated carbon produced
from pomegranate seeds by ZnCl2 activation. Appl. Surf. Sci. 255:
8890-8896.
Vieira, A.P., Santana, S.A.A., Bezerra,
C.W.B., Silva, H.A.S., de Melo, J.C.P., da Silva Filho, E.C. & Airoldi, C.
2010. Copper sorption from aqueous solutions and sugar cane spirits by
chemically modified Babassu coconut (Orbignya speciosa) mesocarp. Chem.
Eng. J. 161: 99-105.
Vieira, A.P., Santana, S.A.A., Bezerra,
C.W.B., Silva, H.A.S., Chaves, J.A.P., Melo, da S. & Airoldi, C. 2009.
Kinetics and thermodynamics of textile dye adsorption from aqueous solutions
using Babassu coconut mesocarp. J. Hazard. Mater. 166: 1272-1278.
Woo, Y.S., Rafatullah, M., Al-Karkhi,
A.F.M. & Tow, T.T. 2013. Removal of terasil red R dye by using fenton
oxidation: A statistical analysis. Desal. Water Treat. 52(22-24): 4583-
4591.
Wu, J.S., Liu, C.H., Chu, K.H. &
Suen, S.Y. 2008. Removal of cationic dye methyl violet 2B
from water by cation exchange membranes. J. Membr. Sci. 309:
239-245.
Xu, J., Chen, L., Qu,
H., Jiao, Y., Xie, J. & Xing, G. 2014. Preparation and characterization of activated carbon from
reedy grass leaves by chemical activation with H3PO4. Appl.
Surface Sci. 320: 674-680.
*Corresponding author; email:
ramlahabdrashid@yahoo.com