Sains Malaysiana 47(3)(2018): 611–618

http://dx.doi.org/10.17576/jsm-2018-4703-23

 

Absorption, Distribution and Elimination Behaviours of Cadmium Treated by in vitro DIN from WLP Residue using SAAM II Modeling

(Proses Penyerapan, Pengedaran dan Perkumuhan bagi Kadmium yang Dirawat dengan in vitro DIN daripada Residu WLP dengan Menggunakan Pemodelan SAAM II)

 

YASMIN MOHD IDRIS PERAMA, NUR SHAHIDAH ABDUL RASHID, SYAZWANI

MOHD FADZIL & KHOO KOK SIONG*

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43900 Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 September 2017/Accepted: 17 October 2017

 

 

ABSTRACT

Mathematically, the human alimentary tract organs were simplified in the model structure as separate compartments with pathways of transfer that are kinetically homogenous and equally distributed. The development of gastro-compartment model follows the first order kinetics of differential equations to describe cadmium absorption, distribution and elimination in the human digestive system. With the aid of in vitro DIN assay, an artificial gastric and gastrointestinal fluid were prepared using water leach purification (WLP) residue as a sample that contained toxic metals cadmium. The Simulation, Analysis and Modelling II (SAAM II) V2.1 software is employed to design models easily, simulate experiments quickly and analyze data accurately. Based on the experimental inputs and fractional transfer rates parameter incorporated to the gastro-compartment model, the concentration of cadmium against time profile curves were plotted as the model output. The curve presented concentration of cadmium in both gastric and gastrointestinal fluid where initially absorption phase (first hour) occurred followed by the distribution phase (second to third hours) and elimination process (third to fifth hours). The concentration of cadmium obtained from the simulated model structures was in good agreement with the fitted model predicted measurements as statistical t-test conducted showed the values were not significantly different. Therefore, modeling approach with SAAM II software gave realistic and better estimation of cadmium dissolution into the human gastrointestinal tract.

 

Keywords: Cadmium; compartmental model; in vitro DIN; SAAM II

 

ABSTRAK

 

Dengan kaedah matematik, organ saluran pencernaan manusia boleh dipermudahkan dengan menggunakan struktur model sebagai ruang berasingan dilengkapi dengan laluan pemindahan yang bersifat homogen dan diedarkan secara sama rata. Pembangunan model gastro-ruang dibina dengan kaedah persamaan pembezaan kinetik tertib pertama bagi menghuraikan proses penyerapan kadmium, pengedaran dan perkumuhan dalam sistem pencernaan manusia. Dengan bantuan teknik cerakin in vitro DIN, cecair gastrik dan gastrousus tiruan telah disediakan menggunakan sisa pemurnian larut lesap air (WLP) sebagai sampel yang mengandungi logam bertoksik kadmium. Perisian Simulasi, Analisis dan Pemodelan II (SAAM II) V2.1 digunakan bagi mereka bentuk model dengan lebih mudah, mensimulasi uji kaji dengan cepat dan menganalisis data secara tepat. Berdasarkan input uji kaji dan parameter kadar pemindahan pecahan yang dimasukkan ke dalam model gastro-ruang, lengkungan kepekatan kadmium terhadap profil masa telah dilakarkan sebagai output model. Lengkungan menunjukkan kepekatan kadmium dalam kedua-dua cecair gastrik dan gastrousus dimulai dengan fasa penyerapan (jam pertama) dan diikuti dengan proses pengedaran (jam kedua hingga ketiga) dan perkumuhan (jam ketiga hingga kelima). Kepekatan kadmium yang diperoleh daripada struktur model simulasi adalah selari dengan lengkungan suaian model anggaran dengan ujian statistik t-test yang dijalankan menunjukkan nilai tersebut tidak mempunyai perbezaan yang signifikan. Oleh itu, pendekatan pemodelan dengan perisian SAAM II dapat memberikan anggaran yang realistik dan lebih baik bagi proses pelarutan kadmium ke dalam saluran penghadaman manusia.

 

Kata kunci: in vitro DIN; kadmium; kompartmen; model; SAAM II

 

REFERENCES

 

Akesson, A., Barregard, L., Bergdahl, I.A., Nordberg, G.F., Nordberg, M. & Skerfving, S. 2014. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ. Health Perspect. 122(5): 431-438.

Al-areqi, W.M. 2014. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP). AIP Conference Proceedings 93: 93-96.

ATSDR. 2012. Toxicological Profile for Cadmium. Atlanta. Division of Toxicology: Agency for Toxic Substances and Disease Registry. GA 11-43.

Bronzino, J.D. 2000. The Biomedical Engineering Handbook, 2nd ed. Vol. 1. New York: Springer Science & Business Media.

Calvey, T.N. & Williams, N.E. 2007. Principles and Practice of Pharmacology for Anaesthetists. Massachusetts: Blackwell Publishing.

Clifford, A.J. & Muller, H.G. 1998. Mathematical modelling in experimental nutrition. Adv. in Exp. Med. and Bio 445: 3-423.

Eckerman, K.F., Wolbarst, A.B. & Richardson, A.C. 1988. Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion, and ingestion: Federal guidance report No. 11 (No. EPA-520/1- 88-020). Washington, DC (USA). Environmental Protection Agency.

Gunaratna, C. 2001. Drug metabolism and pharmacokinetics in drug discovery: A primer for bioanalytical chemists, part III. Current Separations 3: 87-92.

Höllriegl, V., Li, W.B., Leopold, K., Gerstmann, U. & Oeh, U. 2010. Solubility of uranium and thorium from a healing earth in synthetic gut fluids: A case study for use in dose assessments. The Science of the Total Environment 408(23): 5794-800.

Pszonicki, L., Hanna, A.N. & Suschny, O. 2000. Reference sheet IAEA soil-7 trace elements in soil. International Atomic Energy Agency. pp. 1-4.

IAEA. 2004. Safety reports series No. 37 methods for assessing occupational radiation doses due to intakes of radionuclides. International Atomic Energy Agency.

ICRP. 1997. Annex 4 ICRP biokinetic models A4.1 The human respiratory tract model (HRTM). Physiol. pp. 163-182.

ICRP. 1989. Biokinetic models. Annals of the ICRP 20(2): 6-11.

Kabata-pendias, A. & Mukherjee, A.B. 2013. Trace elements from soil to human. Berlin Heidelberg: Springer-Verlag. p. 53.

Kamunda, C., Mathuthu, M. & Madhuku, M. 2016. Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health 13(7): 663.

Kjeldsen, T.H. & Ottesen, J. 2014. Compartment Models. http:// www4. ncsu. edu/~ msolufse/Compartmentmodels.pdf.

Li, W.B., Karpas, Z., Salonen, L., Kurttio, P., Muikku, M., Wahl, W., Höllriegl, V., Hoeschen, C. & Oeh, U. 2005. A compartmental model of uranium in human hair for protracted ingestion of natural uranium in drinking water. Health Physics 96(6): 636-645.

Mohd, Y., Perama, I., Shahidah, N., Rashid, A., Majid, A.A. & Siong, K.K. 2017. Internal dose assessment of 238U contaminated soils based on in-vitro gastrointestinal protocol. AIP Conference Proceedings, Melville, NY. American Institute of Physics. 30005: 1-8.

NCRP. 2006. Development of a biokinetic model for radionuclide-contaminated wounds and procedures for their assessment, dosimetry, and treatment. The National Council on Radiation Protection and Measurements. p. 411.

Rashid, N.S.A., Sarmani, S., Majid, A.A., Mohamed, F. & Siong, K.K. 2015. Solubility of 238U radionuclide from various types of soil in synthetic gastrointestinal fluids using “US in vitro” digestion method. AIP Conference Proceedings. Melville, NY. American Institute of Physics. 1659(1): 050004.

Redeker, E.S. & Blust, R. 2004. Accumulation and toxicity of cadmium in the aquatic oligochaete tubifex tubifex: A kinetic modeling approach. Environmental Science & Technology 38(2): 537-543.

SAAM II. 2011. SAAM II Version 2.1 Basic Tutorials Working with Parameters – Basic. University of Washington and The Epsilon Group.

Shargel, L., Wu-Pong, S. & Yu, B.C.A. 2012. Chapter 7: Pharmacokinetics of Oral Absorption: Applied Biopharmaceutics and Pharmacokinetics. New York: McGraw-Hill Global Education Holdings.

Versantvoort, H.M., van de Kamp, E. & Rompelberg, C.J.M. 2004. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. RIVM report 320102002/2004.

Vo, M. 2017. Chapter 2: Absorption. Pharmacokinetics - Concepts and Applications. http://www.peoi.org/Courses/Coursestu/ phkin/ch/ch2z.html.

von Apeldoorn, M.E. & Speijers, G.J.A. 2016. WHO food additives series. Nutrition 46: 1-17.

Wragg, J. & Cave, M. 2002. In-vitro Methods for the Measurement of the Oral Bioaccessibility of Selected Metals and Metalloids in Soils: A Critical Review. R&D Technical Report P5-062/ TR/01. Bristol: Environment Agency.

 

 

*Corresponding author; email: khookoksiong@gmail.com

 

 

previous