Sains Malaysiana 47(3)(2018):
611–618
http://dx.doi.org/10.17576/jsm-2018-4703-23
Absorption, Distribution and Elimination Behaviours of
Cadmium Treated by in vitro DIN from WLP Residue using SAAM II Modeling
(Proses Penyerapan, Pengedaran dan Perkumuhan bagi Kadmium
yang Dirawat dengan in vitro DIN daripada
Residu WLP dengan Menggunakan Pemodelan SAAM II)
YASMIN MOHD IDRIS PERAMA, NUR SHAHIDAH ABDUL RASHID, SYAZWANI
MOHD FADZIL
& KHOO KOK SIONG*
Pusat
Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia
43900
Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
Received:
12 September 2017/Accepted: 17 October 2017
ABSTRACT
Mathematically,
the human alimentary tract organs were simplified in the model structure as
separate compartments with pathways of transfer that are kinetically homogenous
and equally distributed. The development of gastro-compartment model follows
the first order kinetics of differential equations to describe cadmium
absorption, distribution and elimination in the human digestive system. With
the aid of in vitro DIN assay, an artificial gastric
and gastrointestinal fluid were prepared using water leach purification (WLP)
residue as a sample that contained toxic metals cadmium. The Simulation,
Analysis and Modelling II (SAAM II) V2.1 software is employed to
design models easily, simulate experiments quickly and analyze data accurately.
Based on the experimental inputs and fractional transfer rates parameter
incorporated to the gastro-compartment model, the concentration of cadmium
against time profile curves were plotted as the model output. The curve
presented concentration of cadmium in both gastric and gastrointestinal fluid
where initially absorption phase (first hour) occurred followed by the
distribution phase (second to third hours) and elimination process (third to
fifth hours). The concentration of cadmium obtained from the simulated model
structures was in good agreement with the fitted model predicted measurements
as statistical t-test conducted showed the values were not significantly
different. Therefore, modeling approach with SAAM II software
gave realistic and better estimation of cadmium dissolution into the human
gastrointestinal tract.
Keywords:
Cadmium; compartmental model; in vitro DIN; SAAM
II
ABSTRAK
Dengan
kaedah matematik, organ saluran pencernaan manusia boleh dipermudahkan dengan
menggunakan struktur model sebagai ruang berasingan dilengkapi dengan laluan
pemindahan yang bersifat homogen dan diedarkan secara sama rata. Pembangunan model gastro-ruang dibina dengan kaedah persamaan pembezaan
kinetik tertib pertama bagi menghuraikan proses penyerapan kadmium, pengedaran
dan perkumuhan dalam sistem pencernaan manusia. Dengan bantuan teknik cerakin in vitro DIN,
cecair gastrik dan gastrousus tiruan telah disediakan menggunakan sisa
pemurnian larut lesap air (WLP) sebagai sampel yang mengandungi
logam bertoksik kadmium. Perisian Simulasi, Analisis dan Pemodelan II (SAAM
II) V2.1 digunakan bagi mereka bentuk model dengan lebih mudah,
mensimulasi uji kaji dengan cepat dan menganalisis data secara tepat.
Berdasarkan input uji kaji dan parameter kadar pemindahan pecahan yang dimasukkan ke dalam model gastro-ruang, lengkungan
kepekatan kadmium terhadap profil masa telah dilakarkan sebagai output model.
Lengkungan menunjukkan kepekatan kadmium dalam kedua-dua cecair gastrik dan
gastrousus dimulai dengan fasa penyerapan (jam pertama) dan diikuti dengan
proses pengedaran (jam kedua hingga ketiga) dan perkumuhan (jam ketiga hingga kelima). Kepekatan kadmium yang diperoleh daripada struktur model
simulasi adalah selari dengan lengkungan suaian model anggaran dengan ujian
statistik t-test yang dijalankan menunjukkan nilai tersebut tidak mempunyai
perbezaan yang signifikan. Oleh itu, pendekatan pemodelan dengan
perisian SAAM II dapat memberikan anggaran yang realistik dan
lebih baik bagi proses pelarutan kadmium ke dalam saluran penghadaman manusia.
Kata kunci: in vitro DIN; kadmium; kompartmen; model; SAAM
II
REFERENCES
Akesson, A., Barregard, L., Bergdahl, I.A., Nordberg, G.F., Nordberg,
M. & Skerfving, S. 2014. Non-renal
effects and the risk assessment of environmental cadmium exposure.
Environ. Health Perspect. 122(5): 431-438.
Al-areqi, W.M. 2014. Thorium,
uranium and rare earth elements content in lanthanide concentrate (LC) and
water leach purification (WLP) residue of Lynas advanced materials plant
(LAMP). AIP Conference Proceedings 93: 93-96.
ATSDR. 2012. Toxicological Profile for Cadmium. Atlanta.
Division of Toxicology: Agency for Toxic Substances and Disease Registry. GA
11-43.
Bronzino, J.D. 2000. The Biomedical Engineering Handbook,
2nd ed. Vol. 1. New York: Springer Science & Business Media.
Calvey, T.N. & Williams, N.E. 2007. Principles
and Practice of Pharmacology for Anaesthetists.
Massachusetts: Blackwell Publishing.
Clifford, A.J. & Muller, H.G. 1998. Mathematical
modelling in experimental nutrition. Adv. in Exp. Med. and Bio 445:
3-423.
Eckerman, K.F., Wolbarst, A.B. & Richardson, A.C. 1988.
Limiting values of radionuclide intake and air concentration and dose
conversion factors for inhalation, submersion, and ingestion: Federal guidance
report No. 11 (No. EPA-520/1- 88-020). Washington, DC
(USA). Environmental Protection Agency.
Gunaratna, C. 2001. Drug metabolism and pharmacokinetics in drug
discovery: A primer for bioanalytical chemists, part III. Current
Separations 3: 87-92.
Höllriegl, V., Li, W.B., Leopold, K., Gerstmann,
U. & Oeh, U. 2010. Solubility of uranium and thorium from a
healing earth in synthetic gut fluids: A case study for use in dose
assessments. The Science of the Total Environment 408(23): 5794-800.
Pszonicki, L., Hanna, A.N. & Suschny, O. 2000. Reference sheet
IAEA soil-7 trace elements in soil. International Atomic Energy Agency. pp.
1-4.
IAEA.
2004. Safety reports series No. 37 methods for assessing occupational radiation
doses due to intakes of radionuclides. International Atomic Energy Agency.
ICRP.
1997. Annex 4 ICRP biokinetic models A4.1 The human respiratory tract model
(HRTM). Physiol. pp. 163-182.
ICRP.
1989. Biokinetic models. Annals of the ICRP 20(2): 6-11.
Kabata-pendias, A. & Mukherjee, A.B. 2013. Trace elements from
soil to human. Berlin Heidelberg: Springer-Verlag. p. 53.
Kamunda, C., Mathuthu, M. & Madhuku, M. 2016. Health risk assessment
of heavy metals in soils from witwatersrand gold
mining basin, South Africa. International Journal of Environmental Research
and Public Health 13(7): 663.
Kjeldsen,
T.H. & Ottesen, J. 2014. Compartment Models. http://
www4. ncsu. edu/~ msolufse/Compartmentmodels.pdf.
Li, W.B., Karpas, Z., Salonen, L., Kurttio, P., Muikku, M.,
Wahl, W., Höllriegl, V., Hoeschen, C. & Oeh, U. 2005. A compartmental model
of uranium in human hair for protracted ingestion of natural uranium in
drinking water. Health Physics 96(6): 636-645.
Mohd, Y., Perama, I., Shahidah, N., Rashid, A., Majid, A.A.
& Siong, K.K. 2017. Internal dose assessment of 238U
contaminated soils based on in-vitro gastrointestinal protocol. AIP Conference Proceedings, Melville, NY. American Institute of Physics. 30005: 1-8.
NCRP.
2006. Development of a biokinetic model for radionuclide-contaminated wounds
and procedures for their assessment, dosimetry, and treatment. The National Council on Radiation Protection and Measurements. p. 411.
Rashid,
N.S.A., Sarmani, S., Majid, A.A., Mohamed, F. & Siong, K.K. 2015. Solubility of 238U radionuclide from various types
of soil in synthetic gastrointestinal fluids using “US in vitro”
digestion method. AIP Conference Proceedings. Melville, NY. American Institute of Physics. 1659(1):
050004.
Redeker, E.S. & Blust, R. 2004. Accumulation and
toxicity of cadmium in the aquatic oligochaete tubifex tubifex: A kinetic
modeling approach. Environmental Science & Technology 38(2):
537-543.
SAAM
II. 2011. SAAM II Version 2.1 Basic Tutorials Working with Parameters
– Basic. University of Washington and The Epsilon
Group.
Shargel,
L., Wu-Pong, S. & Yu, B.C.A. 2012. Chapter 7: Pharmacokinetics of Oral
Absorption: Applied Biopharmaceutics and Pharmacokinetics. New York:
McGraw-Hill Global Education Holdings.
Versantvoort,
H.M., van de Kamp, E. & Rompelberg, C.J.M. 2004. Development and
applicability of an in vitro digestion model in assessing the
bioaccessibility of contaminants from food. RIVM report 320102002/2004.
Vo, M. 2017. Chapter 2: Absorption. Pharmacokinetics
- Concepts and Applications. http://www.peoi.org/Courses/Coursestu/
phkin/ch/ch2z.html.
von Apeldoorn, M.E. & Speijers, G.J.A. 2016. WHO food additives series. Nutrition 46: 1-17.
Wragg, J. & Cave, M. 2002. In-vitro Methods for
the Measurement of the Oral Bioaccessibility of Selected Metals and Metalloids
in Soils: A Critical Review. R&D Technical Report P5-062/ TR/01.
Bristol: Environment Agency.
*Corresponding author;
email: khookoksiong@gmail.com