Sains Malaysiana 47(3)(2018): 635–643
http://dx.doi.org/10.17576/jsm-2018-4703-25
Parallel Based Support Vector Regression
for Empirical Modeling of Nonlinear Chemical Process Systems
(Regresi Vektor Sokongan Berdasarkan Selari
untuk Pemodelan Empirikal Sistem Proses Kimia Nonlinear)
HASLINDA ZABIRI*, RAMASAMY MARAPPAGOUNDER
& NASSER M. RAMLI
Chemical
Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri
Iskandar, Perak Darul Ridzuan, Malaysia
Received: 7 March 2017/Accepted: 26
September 2017
ABSTRACT
In this paper, a support vector
regression (SVR) using radial basis function (RBF)
kernel is proposed using an integrated parallel linear-and-nonlinear model
framework for empirical modeling of nonlinear chemical process systems.
Utilizing linear orthonormal basis filters (OBF)
model to represent the linear structure, the developed empirical parallel model
is tested for its performance under open-loop conditions in a nonlinear
continuous stirred-tank reactor simulation case study as well as a highly
nonlinear cascaded tank benchmark system. A comparative study between SVR and
the parallel OBF-SVR models is then investigated. The results showed
that the proposed parallel OBF-SVR model retained the same
modelling efficiency as that of the SVR, whilst enhancing the
generalization properties to out-of-sample data.
Keywords: Empirical modeling; linear
and nonlinear models; nonlinear system; OBF; SVR
ABSTRAK
Di dalam kertas ini, sebuah regresi
vektor sokongan (SVR) yang menggunakan fungsi asas
jejarian (RBF) dicadangkan menggunakan sebuah model rangka kerja
linear dan tidak linear selari bersepadu untuk pemodelan empirik sistem
pemprosesan kimia tidak linear. Dengan menggunakan model penapis asas
ortonormal (OBF) untuk mewakili struktur linear, model selari empirik
yang terbentuk seterusnya diuji prestasinya di bawah keadaan kitaran-terbuka
dalam sebuah kajian kes simulasi reaktor tangki aduk berterusan (CSTR)
yang tidak selari dan juga sistem penanda aras tangka sebaran tidak linear
tertinggi. Sebuah kajian perbandingan antara model SVR dan
juga model OBF-SVR selari kemudiannya dikaji dengan lebih terperinci.
Keputusan menunjukkan bahawa model OBF-SVR selari yang dicadang
juga telah mengekalkan kecekapan pemodelan yang sama seperti SVR,
di samping memperkukuh ciri generalisasi terhadap data luaran sampel.
Kata
kunci: Model linear dan tidak linear; OBF; pemodelan
empirik; sistem tidak linear; SVR
REFERENCES
Babuška, R. &
Verbruggen, H. 2003. Neuro-fuzzy methods for nonlinear system identification. Annual
Reviews in Control 27(1): 73-85.
Beyhan, S. & Alci,
M. 2010. Fuzzy functions based Arx model and new fuzzy basis function models
for nonlinear system identification. Applied Soft Computing 10(2):
439-444.
Billings, S.A. &
Wei, H.L. 2005. A new class of wavelet networks for nonlinear system
identification. IEEE Transactions on Neural Networks 16(4): 862-874.
Castillo, F., Marshall,
K., Green, J. & Kordon, A. 2003. A methodology for combining
symbolic regression and design of experiments to improve empirical
model building. Paper Presented at the Genetic and Evolutionary
Computation Conference - GECCO. Springer: Berlin/Heidelberg.
pp. 212-212.
Cheng, Y. & Hu, J.
2012. Nonlinear system identification based on Svr with quasi-linear kernel. IEEE
International Joint Conference on Neural Networks (IJCNN). pp.1-8.
Cherkassky, V. & Ma,
Y. 2004. Practical selection of Svm parameters and noise estimation
for Svm regression. Neural Networks 17(1): 113-126.
Crone, S.F., Guajardo,
J. & Weber, R. 2006. The impact of preprocessing on support
vector regression and neural networks in time series prediction.
Proceedings of the International Conference on Data Mining,
Last Vegas. pp. 37-44.
Himmelblau, D.M. 2008.
Accounts of experiences in the application of artificial neural networks in
chemical engineering. Industrial & Engineering Chemistry Research 47(16):
5782-5796.
Iplikci, S. 2010.
Support vector machines based neuro-fuzzy control of nonlinear systems. Neurocomputing 73(10): 2097-2107.
Kordon, A.K. 2004.
Hybrid intelligent systems for industrial data analysis. International
Journal of Intelligent Systems 19(4): 367-383.
Lennox, B., Montague,
G.A., Frith, A.M., Gent, C. & Bevan, V. 2001. Industrial application of
neural networks - an investigation. Journal of Process Control 11(5):
497-507.
Lin, S., Zhang, S.,
Qiao, J., Liu, H. & Yu, G. 2008. A parameter choosing method of Svr for
time series prediction. In Young Computer Scientists, 2008. ICYCS 2008. The
9th International Conference for IEEE. pp. 130-135.
Liu, Y., Wang, H., Yu,
J. & Li, P. 2010. Selective recursive kernel learning for online
identification of nonlinear systems with Narx form. Journal of Process
Control 20(2): 181-194.
Ljung, L. 2010.
Perspectives on system identification. Annual Reviews in Control 34(1):
1-12.
Lu, Z. & Sun, J.
2009. Non-Mercer hybrid kernel for linear programming support vector regression
in nonlinear systems identification. Applied Soft Computing 9(1): 94-99.
Lu, Z., Sun, J. &
Butts, K.R. 2009. Linear programming support vector regression with wavelet
kernel: A new approach to nonlinear dynamical systems identification. Mathematics
and Computers in Simulation 79(7): 2051-2063.
Mahmoodi, S., Montazeri,
A., Poshtan, J., Jahed-Motlagh, M. & Poshtan, M. 2007. Volterra-Laguerre
modeling for Nmpc. In Signal Processsing and Its Applications, 2007, ISSPA
2007, 9th International Symposium on IEEE. pp. 1-4.
Nelles, O. 2013. Nonlinear
System Identification: From Classical Approaches to Neural Networks and Fuzzy
Models. New York: Springer Science & Business Media.
Nørgård, P.M.,
Ravn, O., Poulsen, N.K. & Hansen, L.K. 2000. Neural Networks
for Modelling and Control of Dynamic Systems-a Practitioner's
Handbook. Location: Publisher.
Ratcliffe, S.J. &
Shults, J. 2008. Geeqbox: A Matlab toolbox for generalized estimating equations
and quasi-least squares. Journal of Statistical Software 25(14): 1-14.
Shirzad, A., Tabesh, M.
& Farmani, R. 2014. A comparison between performance of support vector
regression and artificial neural network in prediction of pipe burst rate in
water distribution networks. KSCE Journal of Civil Engineering 18(4):
941-948.
Smola, A.J. &
Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and
Computing 14(3): 199-222.
Suganyadevi, M.V. &
Babulal, C.K. 2014. Support vector regression model for the prediction of
loadability margin of a power system. Applied Soft Computing 24:
304-315.
Tötterman, S. &
Toivonen, H.T. 2009. Support vector method for identification of Wiener models. Journal of Process Control 19(7): 1174-1181.
Tufa, L.D., Ramasamy, M.
& Shuhaimi, M. 2011. Improved method for development of parsimonious
orthonormal basis filter models. Journal of Process Control 21(1):
36-45.
Wang, X., Dong, J., Hang,
Y. & Du, Z. 2013. Identification of nonlinear system
via Svr optimized by particle swarm algorithm. Journal of
Theoretical & Applied Information Technology 48(2):
967-972.
Wigren, T. 2006.
Recursive prediction error identification and scaling of non-linear state
space models using a restricted black box parameterization. Automatica 42(1):
159-168.
Wigren, T. & Schoukens,
J. 2013. Three free data sets for development and benchmarking
in nonlinear system identification. In IEEE Control Conference
(ECC), 2013 European. pp. 2933-2938.
Yao, X.J., Panaye, A.,
Doucet, J.P., Zhang, R.S., Chen, H.F., Liu, M.C., Hu, Z.D. & Fan, B.T.
2004. Comparative study of Qsar/Qspr correlations using support vector
machines, radial basis function neural networks, and multiple linear
regression. Journal of Chemical Information and Computer Sciences 44(4):
1257-1266.
Zabiri, H., Ramasamy, M., Tufa, L.D.
& Maulud, A. 2013. Integrated Obf-Nn models with enhanced extrapolation
capability for nonlinear systems. Journal of Process Control 23(10):
1562-1566.
*Corresponding author; email: haslindazabiri@utp.edu.my