Sains Malaysiana 47(3)(2018):
619–633
http://dx.doi.org/10.17576/jsm-2018-4703-24
Peranti Suis Nanoelektromekanikal (NEM)
Berunsurkan Grafin dan Tiub Nano Karbon (CNT)
(Nanoelectromechanical Switch Devices Based on Graphene
and Carbon Nanotube (CNT))
MOHD AMIR ZULKEFLI, MOHD AMBRI MOHAMED*, KIM S
SIOW & BURHANUDDIN YEOP MAJLIS
Institute of Microengineering and
Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 3 Julai 2017/Accepted: 23 October
2017
ABSTRAK
Suis
nanoelektromekanikal (NEM) mempunyai persamaan dengan suis
konvensional semikonduktor apabila digunakan sebagai transistor dan penderia
walaupun prinsip operasinya berbeza. Perbezaan prinsip operasi suis ini
memberikan kelebihan kepada suis NEM untuk beroperasi dalam
persekitaran yang melampau manakala suis konvensional semikonduktor mempunyai
kelebihan daripada segi infrastruktur fabrikasi yang canggih. Dalam kertas ini,
kami mengulas kemajuan terbaru dan potensi teknologi NEM dalam
aplikasi pensuisan berdasarkan bahan berasaskan karbon seperti CNT dan
grafin. Kemajuan reka bentuk geometri suis NEM seperti
struktur rusuk berlubang, mempunyai kelebihan daripada segi voltan operasi
peranti yang rendah, turut dibincangkan dalam kertas ini. Berdasarkan Kitaran
Gemburan Gartner, teknologi, proses dan produk untuk suis NEM atau
hibrid NEM-CMOS berada di takuk berbeza iaitu di jurang ilusi,
cerun pencerahan dan dataran tinggi produktiviti. Kemudian, reka bentuk
geometri suis NEM berasaskan bahan-bahan ini diulas dengan lengkap
berdasarkan kajian kepustakaan terbaru. Kami mengenal pasti cabaran yang
terlibat dalam proses fabrikasi suis NEM berasaskan CNT dan
grafin seperti kebocoran get dan proses litografi yang mencabar. Kesimpulannya,
kami meringkaskan kertas kajian ini kepada beberapa sudut perspektif, pandangan
dan peluang pada masa depan dalam teknologi suis NEM.
Kata kunci:
Bahan karbon; grafin; nanoelektromekanikal (NEM);
suis NEM; tiub nano karbon (CNT)
ABSTRACT
Nanoelectromechanical
(NEM)
switches are similar to the conventional semiconductor switches
when used as a transistor and sensor, in spite of their fundamental
differences in operating principles. This difference in operation
allows NEM switches
to perform better in harsh conditions while conventional semiconductor
switch has the advantage of matured technology in fabrication.
In this paper, we reviewed the recent progress and potential
of NEM technology
in switching applications based on carbon-based materials focusing
on CNT
and graphene. The progress in geometrical design
like perforated beam structure, which can reduce its operation
voltage, was also discussed. Based on Gartner Hype Cycle, the
technology, process and product of NEM switch
or hybrid NEM-CMOS switch was located at various stages such as the
trough of disillusionment, slope enlightment and plateau of
productivity, respectively. Then, the geometrical design of
NEM switch based on these materials was
reviewed from the recent literatures. We also identified the
challenges involved in fabrication of CNT and graphene based NEM switch
technology, such as, short channel effect, gate leakage and
challenge in lithography process. Finally, we concluded this
paper with a few perspectives, insights and opportunities in
NEM switch technology.
Keywords: Carbon-based material; carbon nanotube (CNT);
graphene; nanoelectromechanical (NEM); NEM switch
REFERENCES
Abele, N., Fritschi, R., Boucart, K., Casset, F., Ancey, P. &
Ionescu, A.M. 2005. Suspended-Gate MOSFET: Bringing new MEMS functionality into
solid-state MOS transistor. IEEE International Electron Devices Meeting pp.
479-481. doi:10.1109/IEDM.2005.1609384.
Amaratunga, G.A.J. 2002. A dawn for carbon electronics?. Science 297(5587): 1657-1658. doi:10.1126/science.1075868.
Avouris, P., Chen, Z. & Perebeinos, V. 2007. Carbon-based
electronics. Nature Nanotechnology 2(10): 605-615.
doi:10.1038/nnano.2007.300.
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D.,
Miao, F. & Lau, C.N. 2008. Superior thermal conductivity of single-layer
graphene. Nano Letters 8(3): 902-907.
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G.,
Hone, J., Kim, P. & Stormer, H.L. 2008. Ultrahigh electron mobility in
suspended graphene. Solid State Communications 146(9): 351-355.
doi:10.1016/j.ssc.2008.02.024.
Cassell, A.M., Raymakers, J.A., Kong, J. & Dai, H. 1999. Large
scale CVD synthesis of single-walled carbon nanotubes. The Journal of
Physical Chemistry B 103(31): 6484-6492. doi:10.1021/jp990957s.
Cimalla, V., Pezoldt, J. & Ambacher, O. 2007. Group III
nitride and SiC based MEMS and NEMS: Materials properties, technology and
applications. Journal of Physics D: Applied Physics 40(20): 6386.
doi:10.1088/0022-3727/40/20/S19.
Cui, Y. & Lieber, C.M. 2001. Functional nanoscale electronic
devices assembled using silicon nanowire building blocks. Science 291(5505):
851-853. doi:10.1126/ science.291.5505.851.
Dadgour, H.F. & Banerjee, K. 2009. Hybrid NEMS-CMOS integrated
circuits: A novel strategy for energy-efficient designs. IET Computers &
Digital Techniques 3(6): 593-608. doi:10.1049/iet-cdt.2008.0148.
Dadgour, H.F. & Banerjee, K. 2007. Design and analysis of
hybrid NEMS-CMOS circuits for ultra low-power applications. In Proceedings
of the 44th Annual Design Automation Conference. pp. 306-311. ACM.
doi:10.1109/ DAC.2007.375177.
Dadgour, H., Hussain, M.M. & Banerjee, K. 2010. A new paradigm
in the design of energy-efficient digital circuits using laterally-actuated
double-gate NEMS. Proceedings of the 16th ACM/IEEE International Symposium
on Low Power Electronics and Design. pp. 7-12. ACM..
doi:10.1145/1840845.1840848.
Dadgour, H., Cassell, A.M. & Banerjee, K. 2008. Scaling and
variability analysis of CNT-based NEMS devices and circuits with implications
for process design. IEEE International Electron Devices Meeting, 2008. IEDM
2008. pp. 1-4. doi:10.1109/IEDM.2008.4796742.
Davidson, B.D., Seghete, D., George, S.M. & Bright, V.M. 2011.
ALD Tungsten NEMS switches and tunneling devices. Sensors and Actuators A:
Physical 166(2): 269-276. doi:10.1016/j.sna.2009.07.022.
Dekker, C., Tans, S.J., Devoret, M.H., Dai, H., Smalley, R.E.,
Thess, A. & Georliga, L.J. 1997. Individual single-wall carbon nanotubes as
quantum wires. Nature 386(6624): 474-477. doi:10.1038/386474a0.
Deshpande, V.V., Chiu, H.Y., Postma, H.C., Miko, C., Forro, L.
& Bockrath, M. 2006. Carbon nanotube linear bearing nanoswitches. Nano
Letters 6(6): 1092-1095. doi:10.1021/ nl052513f.
Dujardin, E., Derycke, V., Goffman, M.F., Lefevre, R. &
Bourgoin, J.P. 2005. Self-assembled switches based on electroactuated
multiwalled nanotubes. Applied Physics Letters 87(19):
193107.doi:10.1063/1.2126805.
Eichler, A., Moser, J., Chaste, J., Zdrojek, M. & Bachtold, A.
2011. Nonlinear damping in mechanical resonators made from carbon nanotubes and
graphene. Nature Nanotechnology 6(6): 339-342.
doi:10.1038/nnano.2011.71.
Feng, X.L., Matheny, M.H., Zorman, C., Mehregany, A.M. &
Roukes, M.L. 2010. Low voltage nanoelectromechanical switches based on silicon
carbide nanowires. Nano Letters 10(8): 2891-2896. doi:10.1021/nl1009734.
Frank, I.W., Tanenbaum, D.M., Van der Zande, A.M. & McEuen,
P.L. 2007. Mechanical properties of suspended graphene sheets. Journal of
Vacuum Science & Technology B: Microelectronics and Nanometer Structures
Processing, Measurement, and Phenomena 25(6): 2558-2561.
doi:10.1116/1.2789446.
Franklin, A.D. & Chen, Z. 2010. Length scaling of carbon
nanotube transistors. Nature Nanotechnology 5(12): 858-862.
doi:10.1038/nnano.2010.220.
Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature
Materials 6(3): 183-191. doi:10.1038/nmat1849.
Han, J.W., Ahn, J.H., Kim, M.W., Lee, J.O., Yoon, J.B. & Choi,
Y.K. 2010. Nanowire mechanical switch with a built‐in diode. Small 6(11): 1197-1200.
doi:10.1002/smll.201000170.
Hopcroft, M.A., Nix, W.D. & Kenny, T.W. 2010. What is the Young's
modulus of silicon? Journal of Microelectromechanical Systems
19(2): 229-238.doi:10.1109/JMEMS.2009.2039697.
International Technology Roadmap for Semiconductors - ITRS 2.0
Home Page. 2015. http://www.itrs2.net/.
Jang, J.E., Cha, S.N., Choi, Y.J., Kang, D.J., Butler, T.P.,
Hasko, D.G., Jung, J.E., Kim, J.M. & Amaratunga, G.A. 2008. Nanoscale
memory cell based on a nanoelectromechanical switched capacitor. Nature
Nanotechnology 3(1): 26-30. doi:10.1038/nnano.2007.417.
Jang, J.E., Cha, S.N., Choi, Y., Amaratunga, G.A., Kang, D.J.,
Hasko, D.G., Jung, J.E. & Kim, J.M. 2005. Nanoelectromechanical switches with
vertically aligned carbon nanotubes. Applied Physics Letters 87(16):
163114. doi:10.1063/1.2077858.
Jang, W.W., Lee, J.O.,
Yoon, J.B., Kim, M.S., Lee, J.M., Kim, S.M., Cho, K.H., Kim, D.W., Park, D.
& Lee, W.S. 2008a.
Fabrication and characterization of a
nanoelectromechanical switch with 15-nm-thick suspension air gap. Applied
Physics Letters 92(10): 103110. doi:10.1063/1.2892659.
Jang, W.W., Yoon, J.B., Kim, M.S., Lee,
J.M., Kim, S.M., Yoon, E.J., Cho, K.H. & Park, D. 2008b. NEMS switch with
30nm-thick beam and 20nm-thick air-gap for high density non-volatile memory
applications. Solid-State Electronics 52(10): 1578-1583.
doi:10.1016/j.sse.2008.06.026.
Jensen, K., Kim, K. & Zettl, A. 2008.
An atomic-resolution nanomechanical mass sensor. Nature Nanotechnology 3(9):
533-537. doi:10.1038/nnano.2008.200.
Kim, J.H., Chen, Z.C., Kwon, S. &
Xiang, J. 2014. Three-terminal nanoelectromechanical field effect transistor
with abrupt subthreshold slope. Nano Letters 14(3): 1687-1691.
doi:10.1021/nl5006355.
Kim, P. & Lieberl, C.M. 1999.
Nanotube nanotweezers. Science 286(5447): 2148-2150.
doi:10.1126/science.286.5447.2148.
Kim, S.M., Song, E.B., Lee, S., Seo, S.,
Seo, D.H., Hwang, Y., Candler, R. & Wang, K.L. 2011. Suspended few-layer
graphene beam electromechanical switch with abrupt on-off characteristics and
minimal leakage current. Applied Physics Letters 99(2): 023103.
doi:10.1063/1.3610571.
Krishnan, A., Dujardin, E., Ebbesen,
T.W., Yianilos, P.N. & Treacy, M.M.J. 1998. Young’s modulus of
single-walled nanotubes. Physical Review B 58(20): 14013. doi:10.1103/
PhysRevB.58.14013.
Lee, J.O., Kim, M.W., Ko, S.D., Kang,
H.O., Bae, W.H., Kang, M.H., Kim, K., Yoo, D.E. & Yoon, J.B. 2009.
3-terminal nanoelectromechanical switching device in insulating liquid media
for low voltage operation and reliability improvement. 2009 IEEE
International Electron Devices Meeting (IEDM). pp. 1-4.
doi:10.1109/IEDM.2009.5424380.
Lee, J.O., Song, Y.H., Kim, M.W., Kang,
M.H., Oh, J.S., Yang, H.H. & Yoon, J.B. 2013. A sub-1-volt nanoelectromechanical
switching device. Nature Nanotechnology 8(1): 36-40.
doi:10.1038/nnano.2012.208.
Lee, T.H., Bhunia, S. & Mehregany, M.
2010. Electromechanical computing at 500°C with silicon carbide. Science 329(5997):
1316-1318. doi:10.1126/science.1192511.
Lee, S.W., Lee, D.S., Morjan, R.E.,
Jhang, S.H., Sveningsson, M., Nerushev, O.A., Park, Y.W. & Campbell, E.E.B.
2004. A three-terminal carbon nanorelay. Nano Letters 4(10): 2027- 2030.
doi:10.1021/nl049053v.
Li, P., Jing, G., Zhang, B., Sando, S.
& Cui, T. 2014. Single-crystalline monolayer and multilayer graphene nano
switches. Applied Physics Letters 104(11): 113110.
doi:10.1063/1.4868869.
Li, S., Yu, Z., Yen, S.F., Tang, W.C.
& Burke, P.J. 2004. Carbon nanotube transistor operation at 2.6 GHz. Nano
Letters 4(4): 753-756. doi:10.1021/nl0498740.
Liao, M. & Koide, Y. 2011.
Carbon-based materials: Growth, properties, MEMS/NEMS technologies, and MEM/NEM
switches. Critical Reviews in Solid State and Materials Sciences 36(2):
66-101. doi:10.1080/10408436.2011.572748.
Liu, X., Suk, J.W., Boddeti, N.G.,
Cantley, L., Wang, L., Gray, J.M., Hall, H.J., Bright, V.M., Rogers, C.T.,
Dunn, M.L. & Ruoff, R.S. 2014. Large arrays and properties of 3‐terminal graphene nanoelectromechanical
switches. Advanced Materials 26(10): 1571-1576.
doi:10.1002/adma.201304949.
Loh, O.Y. & Espinosa, H.D. 2012.
Nanoelectromechanical contact switches. Nature Nanotechnology 7(5):
283-295. doi:10.1038/nnano.2012.40.
Loh, O., Wei, X., Sullivan, J., Ocola,
L.E., Divan, R. & Espinosa, H.D. 2012. Carbon-carbon contacts for robust
nanoelectromechanical switches. Advanced Materials 24(18): 2463-2468.
doi:10.1002/adma.201104889.
Loh, O., Wei, X., Ke, C., Sullivan, J.
& Espinosa, H.D. 2011. Robust carbon‐nanotube‐based nano‐electromechanical devices: Understanding and eliminating
prevalent failure modes using alternative electrode materials. Small 7(1):
79- 86. doi:10.1002/smll.201001166.
Milaninia, K.M., Baldo, M.A., Reina, A.
& Kong, J. 2009. All graphene electromechanical switch fabricated by
chemical vapor deposition. Applied Physics Letters 95(18): 183105.
doi:10.1063/1.3259415.
Moldovan, C.F., Vitale, W.A., Sharma, P.,
Bernard, L.S. & Ionescu, A.M. 2015. Fabrication process and
characterization of suspended graphene membranes for RF NEMS capacitive
switches. Microelectronic Engineering 145: 5-8.
doi:10.1016/j.mee.2015.01.032.
Moore, G.E. 1965. Cramming more
components onto integrated circuits. Electronics 38(8): 82-85.
doi:10.1109/ JPROC.1998.658762.
Murali, R., Brenner, K., Yang, Y., Beck,
T. & Meindl, J.D. 2009. Resistivity of graphene nanoribbon interconnects. IEEE
Electron Device Letters 30: 611-613. doi:10.1109/ LED.2009.2020182.
Novoselov, K.S., Geim, A.K., Morozov,
S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A.
2004. Electric field effect in atomically thin carbon films. Science 306(5696):
666-669. doi:10.1126/science.1102896.
Peng, B., Locascio, M., Zapol, P., Li,
S., Mielke, S.L., Schatz, G.C. & Espinosa, H.D. 2008. Measurements of
near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced
crosslinking improvements. Nature Nanotechnology 3(10): 626-631.
doi:10.1038/nnano.2008.211.
Peschot, A., Qian, C. & Liu, T.J.K.
2015. Nanoelectromechanical switches for low-power digital computing. Micromachines 6(8): 1046-1065. doi:10.3390/mi6081046.
Qian, Y., Lou, L., Julius Tsai, M. &
Lee, C. 2012. A dual-silicon-nanowires based U-shape nanoelectromechanical
switch with low pull-in voltage. Applied Physics Letters 100 113102:
2010-2013. doi:10.1063/1.3693382.
Rueckes, T., Kim, K., Joselevich, E.,
Tseng, G.Y., Cheung, C.L. & Lieber, C.M. 2000. Carbon nanotube-based
nonvolatile random access memory for molecular computing. Science 289(5476):
9497. doi:10.1126/science.289.5476.94.
Schwierz, F. 2010. Graphene transistors. Nature
Nanotech 5(7): 487-496. doi:10.1038/nnano.2010.89.
Shi, Z., Lu, H., Zhang, L., Yang, R.,
Wang, Y., Liu, D., Guo, H., Shi, D., Gao, H., Wang, E. & Zhang, G. 2012.
Studies of graphene-based nanoelectromechanical switches. Nano Research 5(2):
82-87. doi:10.1007/s12274-011-0187-9.
Siow, K.S. 2017. Graphite exfoliation to
commercialize graphene technology. Sains Malaysiana 46(7): 1047-1059.
Stampfer, C., Jungen, A., Linderman, R., Obergfell,
D., Roth, S. & Hierold, C. 2006. Nano-electromechanical displacement
sensing based on single-walled carbon nanotubes. Nano Letters 6(7):
1449-1453. doi:10.1021/nl0606527.
Standley, B., Bao, W., Zhang, H., Bruck,
J., Lau, C.N. & Bockrath, M. 2008. Graphene-based atomic-scale switches. Nano
Letters 8(10): 3345-3449. doi:10.1021/nl801774a.
Sun, J., Muruganathan, M., Kanetake, N.
& Mizuta, H. 2016a. Locally-actuated graphene-based nano-electro-mechanical
switch. Micromachines 7(124): 1-6. doi:10.3390/mi7070124.
Sun, J., Schmidt, M.E., Muruganathan, M.,
Chong, H.M. & Mizuta, H. 2016b. Large-scale nanoelectromechanical switches
based on directly deposited nanocrystalline graphene on insulating substrates. Nanoscale 8(12): 6659-6665. doi:10.1039/C6NR00253F.
Sun, J., Wang, W., Muruganathan, M. &
Mizuta, H. 2014. Low pull-in voltage graphene electromechanical switch
fabricated with a polymer sacrificial spacer. Applied Physics Letters 105(33103):
2-5. doi:10.1063/1.4891055.
Theis, T.N. & Solomon, P.M. 2012.
It’s time to reinvent the transistor! Science 327(5973): 1600-1601.
doi:10.1126/ science.1187597.
Wei, D., Liu, Y., Zhang, H., Huang, L.,
Wu, B., Chen, J. & Yu, G. 2009. Scalable synthesis of few-layer graphene
ribbons with controlled morphologies by a template method and their
applications in nanoelectromechanical switches. JACS Articles 131:
11147-11154. doi:10.1021/ja903092k.
Yavari, F., Kritzinger, C., Gaire, C.,
Song, L., Gulapalli, H., Borca‐Tasciuc, T., Ajayan, P.M. & Koratkar, N. 2010. Tunable
bandgap in graphene by the controlled adsorption of water molecules. Small 6(22):
2535-2538. doi:10.1002/ smll.201001384.
Ziegler, K.J., Lyons, D.M., Holmes, J.D.,
Erts, D., Polyakov, B., Olin, H., Svensson, K. & Olsson, E. 2004. Bistable
nanoelectromechanical devices. Applied Physics Letters 84(20):
4074-4076. doi:10.1063/1.1751622.
Zulkefli, M.A., Mohamed, M.A., Siow,
K.S., Yeop Majlis, B., Kulothungan, J., Muruganathan, M. & Mizuta, H. 2017.
Three-dimensional finite element method simulation of perforated graphene
nano-electro-mechanical (NEM) switches. Micromachines 8(8): 236.
doi:10.3390/mi8080236.
Zulkefli, M.A., Mohamed, M.A., Siow, K.S.
& Majlis, B.Y. 2016. Optimization of beam length and air gap of suspended
graphene NEMS switch for low pull-in voltage application. 2016 IEEE
International Conference on Semiconductor Electronics (ICSE) 1: 29-32.
doi:10.1109/ SMELEC.2016.7573583.
*Corresponding author; email: ambri@ukm.edu.my