Sains Malaysiana 47(4)(2018): 707-713

http://dx.doi.org/10.17576/jsm-2018-4704-08

 

An Optical Sensor Based on Immobilized Copper(II) Ions for the Determination of Free Glutamate in Food Samples

(Sensor Optik Berdasarkan Pemegunan Ion Kuprum(II) untuk Penentuan Glutamat Bebas dalam Sampel Makanan)

 

NOOR ZUHARTINI MD MUSLIM1*, MUSA AHMAD2, LEE YOOK HENG3

& BAHRUDDIN SAAD4

 

1School of Health Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

2Faculty of Science & Technology Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

3School of Chemical Sciences and Food Technology Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4School of Chemical Sciences Universiti Sains Malaysia 11800 Pulau Pinang, Malaysia

 

Received: 10 August 2017/Accepted: 25 October 2017

 

 

ABSTRACT

 

An optical fiber chemical sensor for the determination of free glutamate in food samples was fabricated based on the immobilization of 0.1 M copper(II) nitrate trihydrate onto sol-gel glass powder which was then mixed with methyl cellulose to form a pellet. A distinctive colour change from light blue to dark blue was observed in the presence of glutamate in less than 1 min. The colour change was measured by reflectance spectrophotometer at 691 nm. A linear relationship between the reflectance intensity and glutamate concentration was observed in the range of 12.5 to 500 mM with a limit of detection of 10.6 mM. This method is also reproducible with a relative standard deviation of less than 5%, no effect on pH of the glutamate solution and a good recovery of above 80%. The sensor was used for the determination of glutamate in common food items such as soups and flavor enhancers. The results obtained from the fabricated sensor were found to be comparable with HPLC method.

 

Keywords: Copper(II) nitrate trihydrate; free glutamate; optical fiber chemical sensor; sol-gel glass powder

 

ABSTRAK

 

Sensor kimia gentian optik untuk penentuan glutamat bebas dalam sampel makanan telah direka bentuk berdasarkan pemegunan 0.1 M kuprum(II) nitrat trihidrat ke atas serbuk kaca sol-gel yang kemudiannya dicampur dengan metil selulosa untuk dijadikan pelet. Perubahan warna yang ketara daripada biru muda ke biru tua telah diperhatikan dengan kehadiran glutamat kurang daripada satu minit. Perubahan warna ini diukur dengan spektrofotometer pantulan pada 691 nm. Perhubungan linear antara keamatan pantulan dan kepekatan glutamat telah ditunjukkan dalam julat 12.5 ke 500 mM dengan had pengesanan adalah 10.6 mM. Kaedah ini juga boleh dihasilkan semula dengan sisihan piawai relatif kurang daripada 5% serta tidak memberi kesan kepada pH larutan glutamat dan perolehan semula yang bagus iaitu 80% ke atas. Sensor ini telah digunakan untuk menentukan glutamat dalam bahan makanan lazim seperti sup dan penyedap rasa. Keputusan yang diperoleh daripada sensor yang direka bentuk didapati boleh banding dengan keputusan yang diperoleh melalui kaedah HPLC.

 

Kata kunci: Glutamat bebas; kuprum(II) nitrat trihidrat; sensor kimia gentian optik; serbuk kaca sol-gel

 

REFERENCES

Batra, B., Kumari, S. & Pundir, C.S. 2014. Construction of glutamate biosensor based on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode. Enzyme and Microbial Technology 57: 69-77.

Batra, B., Yadav, M. & Pundir, C.S. 2016. L-Glutamate biosensor based on l-glutamate oxidase immobilized onto ZnO nanorods/polypyrrole modified pencil graphite electrode. Biochemical Engineering Journal 105: 428-436.

Chapman, J. & Zhou, M. 1999. Microplate-based fluorometric methods for the enzymatic determination of L-glutamate: Application in measuring L-glutamate in food samples. Analytica Chimica Acta 402: 47-52.

Cozzone, A.J. 2002. Proteins: Fundamental Chemical Properties. Encylopedia of Life Science. Lyon, France: Macmillan Publisher Ltd.

Hughes, G., Pemberton, R.M., Fielden, P.R. & Hart, J.P. 2015. Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD+, integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications. Sensors and Actuators B: Chemical 216: 614-621.

Jamal, M., Hasan, M., Mathewson, A. & Razeeb, K.M. 2013. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosensors and Bioelectronics 40: 213-218.

Janarthanan, C. & Mottola, H.A. 1998. Enzymatic determinations with rotating bioreactors: Determination of glutamate in food products. Analytica Chimica Acta 369: 147-155.

Jouhannaud, J., Rossignol, J. & Stuerga, D. 2008. Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis. Journal of Solid State Chemistry 181: 1439-1444.

Kerr, G.R., Wu-Lee, M., El-Lozy, M., McGandy, R. &  Stare, F. 1979. Food-symptomatology questionnaires: Risks of demand-bias questions and population-biased surveys. In Glutamic Acid: Advances in Biochemistry and Physiology, edited by Filer,  L.J., Garattini, S., Kare, M.R.,  Reynolds, W.A. & Wurtman, R.J. New York: Raven Press.

Khampha, W.,  Yakovleva,  J.,  Isarangkul,  D., Wiyakrutta, S., Meevootisom, V. & Emneus, J. 2004. Specific detection of L-glutamate in food using flow-injection analysis and enzymatic recycling of substrate. Analytica Chimica Acta 518: 127-135.

Liu, M., Rothstein, J.D., Gershon, M.D. & Kirchgessner, A.L. 1997. Glutamatergic enteric neurons. Journal of Neuroscience 17: 4764-4784.

Miller, J.N. & Miller, J.C. 2000. Statistic and Chemometrics for Analytical Chemistry. Harlow, UK: Person Education Limited, Prentice Hall.

Oliveira, M.I.P., Pimental, M.C., Montenegro, M.C., Araujo, A.N., Pimentaland, M.F. & Silva, V.L. 2001. L-Glutamate determination in food samples by flow-injection analysis. Analytica Chimica Acta 44S: 207-213.

Populin, T., Moret, S., Truant, S. & Conte, S.L. 2007. A survey on the presence of free glutamic acid in foodstuffs, with and without added monosodium glutamate. Food Chemistry 104: 1712-1717.

Raiten, D.J., Talbot, J.M. & Fisher, K.D. 1995. Executive summary from the report: Analysis of adverse reactions to monosodium glutamate (MSG). Journal of Nutrition 125: 2892S-2906S.

Ryth-Rinder, M., Kerekes, N., Svensson, M. & Hökfelt, T. 2001. Glutamate release from adult primary sensory neurons in culture is modulated by growth factors. Regulatory Peptides 102: 69-79.

Saad, B., Bari, M.F., Saleh, M.I., Ahmad, K. & Talib, M.K.M. 2005. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. Journal of Chromatography A 1073: 393-397.

Stone, D.L., Smith, D.K. & Whitwood, A.C. 2004. Copper amino-acid complexes-towards encapsulated metal centres. Polyhedron 23: 1709-1717.

Upadhyay, S., Ohgami, N., Kusakabe, H., Mizuno, H., Arima, J., Tamura, T., Inagaki, K. & Suzuki, H. 2006. Performance characterization of recombinant L-glutamate oxidase in a micro GOT/GPT sensing system. Sensors and Actuators B 119: 570-576.

Yu, H., Ma, Z. & Wu, Z. 2015. Immobilization of Ni-Pd/core- shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection. Analytica Chimica Acta 896: 137-142.

 

*Corresponding author; email: zuhartini@usm.my

 

 

 

 

previous