Sains
Malaysiana 47(4)(2018): 707-713
http://dx.doi.org/10.17576/jsm-2018-4704-08
An Optical Sensor Based on Immobilized
Copper(II) Ions for the Determination of Free Glutamate in Food
Samples
(Sensor
Optik Berdasarkan
Pemegunan Ion Kuprum(II) untuk Penentuan Glutamat Bebas dalam Sampel Makanan)
NOOR ZUHARTINI
MD MUSLIM1*, MUSA AHMAD2, LEE YOOK HENG3
& BAHRUDDIN
SAAD4
1School of Health Sciences, Health Campus Universiti Sains Malaysia,
16150 Kubang
Kerian, Kelantan Darul Naim, Malaysia
2Faculty of Science & Technology Universiti
Sains Islam Malaysia, 71800
Bandar Baru Nilai,
Negeri Sembilan Darul Khusus, Malaysia
3School of Chemical Sciences and Food Technology Faculty
of Science & Technology, Universiti
Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
4School of Chemical Sciences Universiti
Sains Malaysia 11800 Pulau
Pinang, Malaysia
Received:
10 August 2017/Accepted: 25 October
2017
ABSTRACT
An optical
fiber chemical sensor for the determination of free glutamate in
food samples was fabricated based on the immobilization of 0.1 M copper(II) nitrate
trihydrate
onto sol-gel glass
powder which was
then mixed
with methyl cellulose to form a pellet. A distinctive
colour change from light blue to dark
blue was observed in the presence of glutamate in less than 1 min.
The colour change was measured by reflectance spectrophotometer
at 691 nm. A linear relationship between
the reflectance intensity and glutamate
concentration was observed
in the range of 12.5
to 500 mM with a limit
of detection of 10.6 mM. This
method is also reproducible with a relative
standard deviation of less than 5%, no effect on pH
of the glutamate solution
and a good recovery of above 80%. The sensor
was used for the determination of glutamate
in common food items such
as soups
and flavor
enhancers. The results
obtained from the fabricated sensor
were found to
be comparable with HPLC method.
Keywords: Copper(II) nitrate trihydrate;
free glutamate; optical fiber chemical sensor; sol-gel glass powder
ABSTRAK
Sensor
kimia gentian optik untuk penentuan glutamat bebas dalam sampel makanan
telah direka
bentuk berdasarkan pemegunan 0.1 M kuprum(II) nitrat trihidrat ke atas serbuk
kaca sol-gel yang kemudiannya
dicampur dengan
metil selulosa untuk dijadikan pelet. Perubahan warna yang
ketara daripada biru muda ke biru tua telah diperhatikan dengan kehadiran glutamat kurang daripada satu minit.
Perubahan warna
ini diukur dengan
spektrofotometer pantulan
pada 691 nm. Perhubungan linear
antara keamatan pantulan dan kepekatan
glutamat telah
ditunjukkan dalam julat 12.5 ke 500 mM dengan had pengesanan
adalah 10.6 mM.
Kaedah ini juga boleh dihasilkan semula dengan sisihan piawai relatif kurang daripada 5% serta tidak memberi kesan
kepada pH larutan
glutamat dan perolehan
semula yang bagus
iaitu 80% ke atas. Sensor
ini telah digunakan untuk menentukan glutamat dalam bahan makanan lazim seperti sup dan penyedap rasa. Keputusan yang
diperoleh
daripada sensor yang
direka
bentuk didapati boleh banding dengan keputusan yang
diperoleh melalui
kaedah HPLC.
Kata kunci: Glutamat bebas; kuprum(II) nitrat trihidrat; sensor kimia gentian
optik; serbuk kaca
sol-gel
REFERENCES
Batra, B., Kumari, S. & Pundir, C.S. 2014. Construction of glutamate biosensor based
on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold
electrode. Enzyme
and Microbial Technology 57:
69-77.
Batra, B., Yadav, M. & Pundir, C.S. 2016. L-Glutamate biosensor based on l-glutamate
oxidase immobilized onto
ZnO nanorods/polypyrrole modified pencil graphite electrode. Biochemical Engineering Journal 105: 428-436.
Chapman, J. & Zhou, M. 1999.
Microplate-based fluorometric methods
for the enzymatic determination of L-glutamate: Application in measuring
L-glutamate in food samples. Analytica Chimica Acta 402: 47-52.
Cozzone, A.J. 2002.
Proteins: Fundamental Chemical Properties. Encylopedia
of Life Science. Lyon, France: Macmillan Publisher Ltd.
Hughes, G., Pemberton, R.M., Fielden, P.R. &
Hart, J.P. 2015. Development of a novel reagentless, screen-printed
amperometric
biosensor based on
glutamate dehydrogenase and NAD+, integrated
with multi-walled carbon nanotubes
for the determination of glutamate in food and clinical applications. Sensors and Actuators
B: Chemical 216: 614-621.
Jamal, M., Hasan, M., Mathewson,
A. & Razeeb, K.M. 2013. Disposable sensor
based on enzyme-free Ni nanowire array electrode
to detect glutamate. Biosensors
and Bioelectronics 40: 213-218.
Janarthanan, C. &
Mottola,
H.A. 1998.
Enzymatic determinations
with rotating bioreactors: Determination of glutamate in food products.
Analytica Chimica Acta 369: 147-155.
Jouhannaud, J., Rossignol, J. & Stuerga, D. 2008.
Rapid synthesis
of tin (IV) oxide nanoparticles by microwave induced
thermohydrolysis. Journal of Solid State Chemistry 181:
1439-1444.
Kerr, G.R., Wu-Lee, M., El-Lozy, M.,
McGandy, R.
& Stare, F. 1979. Food-symptomatology questionnaires: Risks of demand-bias
questions and population-biased surveys. In Glutamic Acid: Advances
in Biochemistry and Physiology,
edited by Filer, L.J., Garattini,
S., Kare, M.R., Reynolds, W.A. & Wurtman, R.J. New York: Raven Press.
Khampha, W., Yakovleva, J., Isarangkul, D., Wiyakrutta, S.,
Meevootisom, V. & Emneus, J. 2004. Specific detection of L-glutamate in food
using flow-injection analysis and enzymatic recycling of substrate.
Analytica Chimica Acta 518: 127-135.
Liu, M., Rothstein, J.D., Gershon,
M.D. & Kirchgessner, A.L. 1997. Glutamatergic enteric neurons. Journal of Neuroscience 17: 4764-4784.
Miller, J.N. & Miller, J.C.
2000. Statistic and Chemometrics
for Analytical Chemistry. Harlow,
UK: Person Education Limited, Prentice
Hall.
Oliveira, M.I.P., Pimental, M.C., Montenegro, M.C., Araujo, A.N., Pimentaland, M.F. &
Silva, V.L. 2001. L-Glutamate
determination in food samples by flow-injection analysis. Analytica Chimica Acta 44S:
207-213.
Populin, T., Moret, S., Truant, S. & Conte, S.L. 2007. A survey on
the presence of free glutamic acid in foodstuffs, with and without
added monosodium glutamate. Food Chemistry 104: 1712-1717.
Raiten, D.J., Talbot, J.M. & Fisher, K.D. 1995. Executive
summary from the report: Analysis of adverse reactions to monosodium
glutamate (MSG). Journal of
Nutrition 125: 2892S-2906S.
Ryth-Rinder, M., Kerekes, N., Svensson, M. &
Hökfelt, T. 2001.
Glutamate release from adult primary sensory neurons in culture is
modulated by
growth factors. Regulatory Peptides 102: 69-79.
Saad, B., Bari, M.F., Saleh,
M.I., Ahmad, K. & Talib, M.K.M. 2005. Simultaneous determination of
preservatives (benzoic acid, sorbic
acid, methylparaben and propylparaben)
in foodstuffs using high-performance liquid chromatography.
Journal of Chromatography
A 1073: 393-397.
Stone, D.L.,
Smith, D.K. & Whitwood, A.C. 2004. Copper amino-acid
complexes-towards encapsulated metal
centres. Polyhedron
23: 1709-1717.
Upadhyay,
S., Ohgami,
N., Kusakabe, H., Mizuno, H., Arima,
J., Tamura, T., Inagaki,
K. & Suzuki,
H. 2006. Performance characterization of recombinant
L-glutamate oxidase in a micro GOT/GPT
sensing system. Sensors and Actuators B 119: 570-576.
Yu, H., Ma, Z. & Wu, Z. 2015.
Immobilization of Ni-Pd/core- shell nanoparticles
through thermal polymerization of acrylamide on glassy carbon electrode
for highly stable and sensitive glutamate detection. Analytica Chimica Acta 896:
137-142.
*Corresponding author; email: zuhartini@usm.my
|