Sains Malaysiana 47(4)(2018): 715-723

http://dx.doi.org/10.17576/jsm-2018-4704-09

 

Kebolehserapan Metilena Biru oleh Hidrogel Selulosa Bakteria Teradiasi Gamma Menggunakan Isoterma Langmuir dan Freundlich

(Absorption Ability of Gamma Irridiated Bacterial Cellulose Hydrogel using Langmuir

and Freundlich Isotherme)

 

AZWAN MAT LAZIM*, ADIL HAKAM OSMAN & MARYAM MOKHTAROM

 

Pusat Pengajian Sains Kimia & Teknologi Makanan, Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 22 June 2017/Accepted: 26 October 2017

 

 

ABSTRAK

 

Kajian ini bertujuan menghasilkan hidrogel responsif berasaskan selulosa bakteria yang diperoleh daripada Nata de Coco (NDC) dan asid akrilik (AA). Tiga jenis sampel telah disediakan berdasarkan nisbah NDC:AA iaitu sampel hidrogel A [1:1], B [2:1] dan C [3:1]. Pencangkukan AA terhadap molekul NDC menggunakan kaedah pempolimeran radikal Gamma (GRP) menghasilkan hidrogel NDC-AA (sumber: 60Co). Kaedah yang menggunakan tenaga yang tinggi ini akan menghasilkan radikal bebas seperti OH•, H•, H2O2 dan H2. Kesemua radikal ini menyerang kumpulan berfungsi yang terdapat pada NDC dan AA seterusnya menggalakkan proses pencangkukan AA terhadap NDC. Hidrogel B [2:1] dipilih dan diuji sebagai penjerap metilena biru (MB) dan perubahan keamatannya telah dianalisis menggunakan spektrofotometer UV-VIS. Keputusan yang diperoleh telah diselaraskan dengan dua model isoterma, Langmuir dan Freundlich. Perbandingan pemalar bagi kedua-dua model isoterma ini mendapati hidrogel B [2:1] yang dihasilkan telah mematuhi kedua-dua model isoterma. Keputusan yang diperoleh ini menyokong keupayaan hidrogel B [2:1] untuk digunakan sebagai penjerap alternatif MB yang paling efisien.

 

Kata kunci: Hidrogel; metilena biru; penjerapan; selulosa bakteria; teknik sinaran gamma

 

 

ABSTRACT

 

This study aimed to produce a responsive hydrogel based on bacterial cellulose obtained from Nata de Coco (NDC) and acrylic acid (AA). Three samples were prepared by ratio of NDC:AA and labelled as hydrogel A [1:1], B [2:1] and C [3:1]. The grafting of AA onto NDC molecules using gamma radiation polymerisation (GRP) method resulting in the formation of NDC-AA hydrogel (source: 60Co). The high energy used in this method produced free radicals such as OH•, H•, H2O2 and H2. These free radicals attacked the functional groups of NDC and AA, allowing AA to be grafted onto NDC. Hydrogel B [2:1] was selected for further test in methylene blue (MB) adsorption using UV-VIS spectrophotometer. All data were analyzed and adjusted according to Langmuir and Freundlich isotherm model. The comparison of constant in both samples were analyzed and found that hydrogel B [2:1] data has fitted both models. Therefore, the results obtained supported the ability of hydrogel B [2:1] as an alternative MB adsorbent.

 

Keywords: Adsorption; bacterial cellulose; gamma radiation technique; hydrogel; methylene blue

 

 

 

REFERENCES

 

Amin, M.C.I.M., Abadi, A.G. & Katas, H. 2014. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers 99: 180-189.

Amin, M.C.I.M., Ahmad, N., Halib, N. & Ahmad, I. 2012. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88(2): 465-473.

Ashri, A. & Lazim, A.M. 2014. A study on the effect of the concentration of N, N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel. AIP Conference Proceedings 1614(1): 251-255.

Azizian, S. 2004. Kinetic models of sorption: A theoretical analysis. Journal of Colloid and Interface Science 276(1): 47-52.

Azizian, S. & Fallah, R.N. 2010. A new empirical rate equation for adsorption kinetics at solid/solution interface. Applied Surface Science 256(17): 5153-5156.

Azman, I., Mutalib, A.S., yusoff, S.F.M., Fazry, S., Noordin, A., Kumaran, M. & Lazim, A.M. 2016. Novel discorea hispida starch based hydrogel and their beneficial useas disinfectant. Journal of Bioactive and Biocompatible Polymers 31(1): 42-59.

Azwan, M.L., Farahain, M., Siti, F.M.Y., Ahmad, I. & Adil, H. 2013. Synthesis and characterization of ph sensitive hydrogel using extracted pectin from dragon fruit peel. Malaysian Journal of Analytical Sciences 17(3): 481-489.

Boo, W.P. & Azwan, M.L. 2016. Synthesis and characterization of starch-based hydrogel by using gamma radiation technique. Malaysian Journal of Analytical Sciences 20(5): 1011-1019.

Bulut, Y. & Aydın, H. 2006. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194: 259-267.

Dafader, N.C., Akter, T., Haque, M.E., Swapna, S.P., Islam, S. & Huq, D. 2012. Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel prepared by the application of gamma radiation. African Journal of Biotechnology 11(66): 13049-13057.

Fytianos, K., Voudrias, E. & Kokkalis, E. 2000. Sorption– desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere 40(1): 3-6.

Ghaedi, M., Nasab, A.G., Khodadoust, S., Rajabi, M. & Azizian, S. 2014. Application of activated carbon as  adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry 20(4): 2317-2324.

Hadi, H. & Idayu, M.I. 2012. Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. International Journal of Biological Macromolecules 50(5): 1334-1340.

Haerifar, M. & Azizian, S. 2013. An exponential kinetic model for adsorption at solid/solution interface. Chemical Engineering Journal 215-216: 65-71.

Hameed, B.H., Din, A.T.M. & Ahmad, A.L. 2007. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials 141(3): 819-825.

Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.

Lee, S.C., Kwon, I.K. & Park, K. 2013. Hydrogels for delivery of bioactive agents: A historical perspective. Advanced Drug Delivery Reviews 65: 17-20.

Liew, M., Rizafizah, O., Rozida, K., Amin, M.C.I.M. & Azwan, M.L. 2015. Synthesis of hydrogel based on nata de coco and acrylic acid as co-monomer using free radical polymerization method. Malaysian Journal of Analytical Sciences 18(2): 299-305.

Ofomaja, A.E. 2007. Sorption dynamics and isotherm studies of methylene blue uptake on to palm kernel fibre. Chemical Engineering Journal 126(1): 35-43.

Olivera, S., Muralidhara, H.B., Venkatesh, K., Guna, K., Gopalakrishna, K. & Kumar, Y.K. 2016. Potential applications of cellulose and chitosan nanoparticles/ composites in wastewater treatment: A review. Carbohydrate Polymers 153: 600-618.

Sajab, M.S., Chia, C.H., Zakaria, S. & Khiew, P.S. 2013. Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions. Bioresour. Technol. 128: 571-577.

Sun, X.F., Liu, B., Jing, Z. & Wang, H. 2015. Preparation and adsorption property of xylan/ poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydrate Polymers 118: 16-23.

Zhou, C., Lee, S., Dooley, K. & Wu, Q. 2013. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. Journal of Hazardous Materials 263(Part 2): 334-341.

Zhou, Y., Fu, S., Liu, H., Yang, S. & Zhan, H. 2011. Removal of methylene blue dyes from wastewater using cellulose-based superadsorbent hydrogels. Polymer Engineering & Science 51(12): 2417-2424.

 

*Corresponding author; email: azwanlazim@ukm.edu.my

 

 

 

 

previous