Sains Malaysiana
47(4)(2018): 811-817
http://dx.doi.org/10.17576/jsm-2018-4704-21
Alloying Behavior and Microstructural Changes
of a Ti-10%Mo-10%Cr Alloy on Sintering Process
(Sifat Pengaloian dan Perubahan Mikrostruktur Aloi Ti-10%Mo-10%Cr
ke atas Proses Sinter)
JUNAIDI SYARIF1*,
EKO KURNIAWAN2, TUBAGUS N. ROHMANNUDIN2, MOHAMAD RASIDI
RASANI2 & ZAINUDDIN SAJURI2
1University of Sharjah, College
of Engineering, Sharjah, UAE
2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received: 17 October 2016/Accepted:
25 October 2017
ABSTRACT
This study aimed to investigate the effects of element diffusion on the alloying behaviour and microstructure of a Ti-10%Mo- 10%Cr alloy during sintering and furnace cooling. A theoretical
calculation of the average diffusion distance for each element was performed to predict the alloying behaviour
during sintering and furnace cooling. The Ti-10%Mo-10%Cr alloy was fabricated
using a blended element powder metallurgy approach. Micrograph of the samples
after sintering showed bright-circle structures and significantly decreased
equiaxed structures. The number of plate-like structures increased with prolonged sintering time. Microstructural changes occurred because of element diffusion resulting from the prolonged
sintering time. Moreover, the
diffusion distance of each element also increased with prolonged sintering
time. Although elements can sufficiently diffuse during both sintering and furnace cooling, the diffusion distance during sintering was considerably higher than that during furnace
cooling for all elements. The diffusion distances of Cr and Mo were the highest
and lowest, respectively, during sintering and furnace cooling. This study
showed that alloying behaviour mostly occurred during sintering and was
controlled by the diffusion of Mo atoms.
Keywords: Diffusion; microstructure; powder
metallurgy; sintering; Ti alloy
ABSTRAK
Kajian ini bertujuan untuk mengkaji kesan peresapan unsur terhadap kelakuan pengaloian dan mikrostruktur pada aloi
Ti-10%Mo-10%Cr semasa sinteran dan penyejukan relau. Pengiraan secara teori terhadap jarak peresapan purata bagi setiap unsur dilakukan untuk meramal kelakuan pengaloian semasa
sinteran dan penyejukan relau. Aloi Ti-10%Mo- 10%Cr telah direka menggunakan
pendekatan metalurgi serbuk unsur sebati. Mikrograf sampel selepas pensinteran
menunjukkan struktur bulatan-terang dan struktur sama paksi yang menurun secara ketara. Bilangan struktur seperti plat meningkat dengan
memanjangkan masa pensinteran. Perubahan mikrostruktur berlaku disebabkan
penyebaran unsur yang dihasilkan semasa pensinteran yang berpanjangan. Selain
itu, jarak resapan bagi setiap elemen juga meningkat dengan masa pensinteran berpanjangan. Walaupun unsur-unsur boleh cukup meresap semasa sinteran dan penyejukan
relau, jarak resapan semasa sinteran adalah lebih tinggi daripada semasa penyejukan relau untuk semua unsur. Jarak peresapan Cr dan Mo masing-masing yang tertinggi dan terendah,
semasa sinteran dan penyejukan relau. Kajian ini menunjukkan bahawa kelakuan pengaloian kebanyakannya berlaku semasa sinteran dan dikawal oleh resapan atom Mo.
Kata kunci: Aloi
Ti; metalurgi serbuk; mikrostuktur; pensinteran; peresapan
REFERENCES
Abkowitz, S., Abkowitz, S. & Fisher, H. 2015. Titanium alloy components manufacture from
blended elemental powder and the qualification process. In Titanium Powder Metallurgy:
Science, Technology and Applications, edited by Qian, M. & Froes, F.H. Oxford: Butterworth-Heinemann.
Atkins, P. & De Paula, J. 2006. Atkins’ Physical Chemistry. New York: Oxford University Press.
Balluffi, R.W., Allen, S.
& Carter, W.C. 2005. Kinetics of Materials. New Jersey: John Wiley & Sons, Inc.
Carman, A., Zhang, L.C.,
Ivasishin, O.M., Savvakin, D.G., Matviychuk, M.V. & Pereloma, E.V. 2011. Role of alloying
elements in microstructure evolution and alloying elements behaviour
during sintering of a near-β titanium alloy. Materials
Science and Engineering: A 528: 1686-1693.
Fujita, T., Ogawa, A., Ouchi, C. & Tajima, H. 1996. Microstructure and properties of titanium
alloy produced in the newly developed blended elemental powder metallurgy
process. Materials Science and
Engineering: A 213: 148-153.
Ganguly, J. 2002. Diffusion kinetics in minerals:
Principles and applications to tectono-metamorphic processes. European Mineralogical Union Notes in Mineralogy 4(Chapter 10): 271-309.
Hagiwara, M. & Emura, S. 2003. Blended elemental P/M synthesis and property evaluation of Ti-1100 alloy. Materials Science and Engineering: A 352: 85-92.
Kakani, S.L. 2004. Material Science. New Delhi: New Age
International (P) Limited.
Leyens, C. & Peters, M. 2003. Titanium and Titanium Alloys. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
Lütjering, G. &
Williams, J.C. 2007. Titanium. 2nd
ed. Berlin: Springer-Verlag.
Nakajima, H. & Koiwa, M. 1991. Diffusion in titanium. ISIJ International 31: 757-766.
Niinomi, M. 2003. Recent
research and development in titanium alloys for biomedical applications and
healthcare goods. Science and Technology
of Advanced Materials 4: 445-454.
Niinomi, M. 2002. Recent
metallic materials for biomedical applications. Metallurgical and Materials Transactions A 33:
477-486.
Oliveira, N. &
Guastaldi, A. 2009. Electrochemical stability and corrosion resistance of
Ti–Mo alloys for biomedical applications. Acta Biomaterialia 5: 399-405.
Philibert, J. 1991. Atom Movements: Diffusion and Mass Transport
in Solids. Les ulis: Editions de Physique.
Shackelford, J.F. & Alexander, W. 2010. CRC Materials Science and Engineering Handbook. 3rd ed. Florida: Taylor & Francis.
Shewmon, P.G. 1989. Diffusion in Solids. 2nd ed. New
York: McGraw-Hill.
Syarif, J., Rohmannudin, T.N., Omar, M.Z.,
Sajuri, Z. & Harjanto, S. 2013. Stability of the beta phase in Ti-Mo-Cr
alloy fabricated by powder metallurgy. Journal
of Mining and Metallurgy, Section B: Metallurgy 49: 285-292.
Syarif, J., Rohmannudin, T.N., Omar, M.Z.,
Sajuri, Z. & Daud, A.R. 2008. Study on formation of β single phase of a Ti-10at% Mo-10at% Cr alloy on sintering
and solution treatment, Proceedings of
the 1st WSEAS International Conference on Materials Science. pp. 48-52.
Yang, Y.F., Luo, S.D., Schaffer, G.B. & Qian, M. 2011. Sintering of Ti–10V–2Fe–3Al and mechanical properties. Materials Science and Engineering: A 528(22-23): 6719-6726.
Zhang, Y. 2008. Geochemical Kinetics. New Jersey: Princeton University Press.
*Corresponding author; email: sjunaidi@sharjah.ac.ae