Sains Malaysiana 47(6)(2018): 1131–1138

http://dx.doi.org/10.17576/jsm-2018-4706-08

 

Esterification of Levulinic Acid to Levulinate Esters in the Presence of Sulfated Silica Catalyst

(Pengesteran Asid Levulinik kepada Ester Levulinat dengan Kehadiran Pemangkin Silika Sulfat)

 

NUR AAINAA SYAHIRAH RAMLI1, NUR IRSALINA HISHAM2 & NOR AISHAH SAIDINA AMIN2*

 

1Advanced Oleochemical Technology Division,, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 6 September 2017/Accepted: 11 December 2017

 

ABSTRACT

Levulinic acid (LA) is one of biomass derived building block chemicals with various applications. Catalytic esterification of LA with alkyl alcohol produces levulinate ester which can be applied as fragrance, flavouring agents, as well as fuel additives. In this study, a series of sulfated silica (SiO2) catalyst was prepared by modification of SiO2 with sulfuric acid (H2SO4) at different concentrations; 0.5 M to 5 M H2SO4. The catalysts were characterized, and tested for esterification of LA with ethanol to ethyl levulinate (EL). The effect of various reaction parameters including reaction time, catalyst loading and molar ratio of LA to ethanol on esterification of LA to EL were inspected. The catalyst with high concentration of acid sites seemed suitable for LA esterification to EL. Among the sulfated SiO2 catalysts tested (0.5 M-SiO2, 1 M-SiO2, 3 M-SiO2 and 5 M-SiO2), 3 M-SiO2 exhibited the highest performance with the optimum EL yield of 54% for reaction conducted at reflux temperature for 4 h, 30% 3 M-SiO2 loading and LA to ethanol molar ratio of 1:20. Besides, the reusability of 3 M-SiO2 catalyst for LA esterification with ethanol was examined for five cycles. Esterification of LA with methanol and 1-butanol were also carried out for methyl levulinate (ML) and butyl levulinate (BL) productions with 69% and 40% of ML and BL yields, respectively. This study demonstrates the potential of sulfated SiO2 catalyst for levulinate ester production from LA at mild process condition.

 

Keywords: Esterification; levulinic acid; levulinate ester; sulfated silica

 

ABSTRAK

Asid levulinik (LA) ialah bahan kimia asas daripada biojisim dengan pelbagai aplikasi. Pengesteran bermangkin asid levulinik dengan alkil alkohol menghasilkan ester levulinat yang dapat digunakan sebagai bahan pewangi dan perasa, juga aditif bahan api. Dalam kajian ini, satu siri pemangkin silika (SiO2) sulfat telah dihasilkan melalui pengubahsuaian SiO2 bersama asid sulfurik (H2SO4) berkepekatan yang berbeza; 0.5 M hingga 5 M. Pemangkin tersebut telah dicirikan dan diuji bagi pengesteran LA dengan etanol kepada etil levulinat (EL). Kesan pelbagai parameter tindak balas termasuk masa tindak balas, suapan pemangkin dan nisbah molar antara LA dan etanol terhadap pengesteran LA kepada EL telah dikaji. Pemangkin dengan kepekatan yang tinggi bagi tapak asid tampak sesuai untuk pengesteran LA. Antara SiO2 sulfat yang telah diuji (0.5 M-SiO2, 1 M-SiO2, 3 M-SiO2, dan 5 M-SiO2), 3 M-SiO2 menunjukkan prestasi tertinggi dengan hasil optimum EL sebanyak 54% untuk tindak balas yang dijalankan pada suhu refluks selama 4 jam, menggunakan 30% 3 M-SiO2 suapan dan nisbah molar 1:20 antara LA dan etanol. Selain itu, kebolehgunaan semula 3 M-SiO2 telah dikaji untuk 5 kitaran. Pengesteran LA dengan metanol dan 1-butanol untuk penghasilan metil levulinat (ML) dan butil levulinat (BL) turut ditunjukkan dengan hasil masing-masing sebanyak 69% dan 40% bagi ML dan BL. Kajian ini menunjukkan potensi SiO2 sulfat untuk penghasilan ester levulinat daripada LA pada keadaan proses yang sederhana.

 

Kata kunci: Asid levulinik; ester levulinat; pengesteran; silika sulfat

REFERENCES

Ahlkvist, J., Wärnå, J., Salmi, T. & Mikkola, J.P. 2016. Heterogeneously catalyzed conversion of nordic pulp to levulinic and formic acids. Reaction Kinetics, Mechanisms and Catalysis 119: 415-427.

Bart, H.J., Reidetschlager, J., Schatka, K. & Lehmann, A. 1994. Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Industrial & Engineering Chemistry Research 33: 21-25.

Chang, C., Xu, G. & Jiang, X. 2012. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology 121: 93-99.

Cirujano, F.G., Corma, A. & Llabrés i Xamena, F.X. 2015a. Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science 124: 52-60.

Cirujano, F.G., Corma, A. & Llabrés i Xamena, F.X. 2015b. Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science 124: 52-60.

Démolis, A., Essayem, N. & Rataboul, F. 2014. Synthesis and applications of alkyl levulinates. ACS Sustainable Chemistry & Engineering 2: 1338-1352.

Dharne, S. & Bokade, V.V. 2011. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry 20: 18-24.

Enumula, S.S., Gurram, V.R.B., Chada, R.R., Burri, D.R. & Kamaraju, S.R.R. 2017. Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst. Journal of Molecular Catalysis A: Chemical 426: 30-38.

Fernandes, D.R., Rocha, A.S., Mai, E.F., Mota, C.J.A. & Teixeira da Silva, V. 2012. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General 425-426: 199-204.

Li, Y., Liu, H., Song, C., Gu, X., Li, H., Zhu, W., Yin, S. & Han, C. 2013. The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid. Bioresource Technology 133: 347-353.

Liu, R., Chen, J., Huang, X., Chen, L., Ma, L. & Li, X. 2013. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chemistry 15: 2895-2903.

Maheria, K., Kozinski, J. & Dalai, A. 2013. Esterification of levulinic acid to n-Butyl levulinate over various acidic zeolites. Catalysis Letters 143: 1220-1225.

Melero, J.A., Morales, G., Iglesias, J., Paniagua, M., Hernández, B. & Penedo, S. 2013. Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Applied Catalysis A: General 466: 116-122.

Musa, I.A. 2016. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum 25: 21-31.

Nandiwale, K.Y. & Bokade, V.V. 2015a. Environmentally benign catalytic process for esterification of renewable levulinic acid to various alkyl levulinates biodiesel. Environmental Progress & Sustainable Energy 34: 795-801.

Nandiwale, K.Y. & Bokade, V.V. 2015b. Esterification of renewable levulinic acid to n-butyl levulinate over modified H-ZSM-5. Chemical Engineering & Technology 38: 246-252.

Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S., Joshi, P.N., Deshpande, S.S., Patil, V.S. & Bokade, V.V. 2013. Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General 460-461: 90-98.

Neves, P., Russo, P.A., Fernandes, A., Antunes, M.M., Farinha, J., Pillinger, M., Ribeiro, M.F., Castanheiro, J.E. & Valente, A.A. 2014. Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General 487: 148-157.

Pasquale, G., Vázquez, P., Romanelli, G. & Baronetti, G. 2012. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catalysis Communications 18: 115-120.

Patil, C.R., Niphadkar, P.S., Bokade, V.V. & Joshi, P.N. 2014. Esterification of levulinic acid to ethyl levulinate over bimodal micro–mesoporous H/BEA zeolite derivatives. Catalysis Communications 43: 188-191.

Ramli, N.A.S. & Amin, N.A.S. 2017. Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. BioEnergy Research 10: 50-63.

Ramli, N.A.S., Sivasubramaniam, D. & Amin, N.A.S. 2017a. Esterification of levulinic acid using ZrO2-supported phosphotungstic acid catalyst for ethyl levulinate production. BioEnergy Research 10: 1105-1116.

Ramli, N.A.S., Zaharudin, N.H. & Amin, N.A.S. 2017b. Esterification of renewable levulinic acid to levulinate esters using Amberlyst-15 as a solid acid catalyst. Jurnal Teknologi 79: 137-142.

Siva Sankar, E., Mohan, V., Suresh, M., Saidulu, G., David Raju, B. & Rama Rao, K.S. 2016. Vapor phase esterification of levulinic acid over ZrO2/SBA-15 catalyst. Catalysis Communications 75: 1-5.

Song, D., An, S., Lu, B., Guo, Y. & Leng, J. 2015. Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Applied Catalysis B: Environmental 179: 445-457.

Su, F., An, S., Song, D., Zhang, X., Lu, B. & Guo, Y. 2014. Heteropoly acid and ZrO2 bifunctionalized organosilica hollow nanospheres for esterification and transesterification. Journal of Materials Chemistry A 2: 14127-14138.

Su, F., Ma, L., Song, D., Zhang, X. & Guo, Y. 2013a. Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph) Si hybrid catalyst for methyl levulinate synthesis. Green Chemistry 15: 885-890.

Su, F., Wu, Q., Song, D., Zhang, X., Wang, M. & Guo, Y. 2013b. Pore morphology-controlled preparation of ZrO2- based hybrid catalysts functionalized by both organosilica moieties and Keggin-type heteropoly acid for the synthesis of levulinate esters. Journal of Materials Chemistry A 1: 13209-13221.

Varkolu, M., Moodley, V., Potwana, F.S.W., Jonnalagadda, S.B. & van Zyl, W.E. 2016. Esterification of levulinic acid with ethanol over bio-glycerol derived carbon–sulfonic-acid. Reaction Kinetics, Mechanisms and Catalysis 120(1): 69-80.

Wang, Y., Vogelgsang, F. & Román-Leshkov, Y. 2015. Acid-catalyzed oxidation of levulinate derivatives to succinates under mild conditions. ChemCatChem 7: 916-920.

Ya’aini, N., Amin, N.A.S. & Asmadi, M. 2012. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresource Technology 116: 58-65.

Yadav, G.D. & Yadav, A.R. 2014. Synthesis of ethyl levulinate as fuel additives using heterogeneous solid superacidic catalysts: Efficacy and kinetic modeling. Chemical Engineering Journal 243: 556-563.

Yan, K., Wu, G., Wen, J. & Chen, A. 2013. One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catalysis Communications 34: 58-63.

Zainol, M.M., Asmadi, M., Amin, N.A.S. & Ahmad, K. 2016. Carbon cryogel microsphere for ethyl levulinate production: Effect of carbonization temperature and time. Journal of Engineering Science and Technology 11: 108-121.

 

 

*Corresponding author; email; noraishah@cheme.utm.my


 

 

previous