Sains Malaysiana 47(6)(2018): 1131–1138
http://dx.doi.org/10.17576/jsm-2018-4706-08
Esterification
of Levulinic Acid to Levulinate Esters in the Presence of Sulfated Silica
Catalyst
(Pengesteran
Asid Levulinik kepada Ester Levulinat dengan Kehadiran Pemangkin Silika Sulfat)
NUR AAINAA SYAHIRAH RAMLI1, NUR IRSALINA HISHAM2 & NOR AISHAH SAIDINA AMIN2*
1Advanced
Oleochemical Technology Division,, Malaysian Palm Oil Board, No 6, Persiaran
Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
2Chemical Reaction
Engineering Group (CREG), Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
Darul Takzim, Malaysia
Received: 6 September 2017/Accepted: 11 December 2017
ABSTRACT
Levulinic acid (LA) is one of biomass derived
building block chemicals with various applications. Catalytic esterification of LA with alkyl alcohol produces levulinate ester which can be applied
as fragrance, flavouring agents, as well as fuel additives. In this study, a
series of sulfated silica (SiO2) catalyst was prepared
by modification of SiO2 with
sulfuric acid (H2SO4)
at different concentrations; 0.5 M to 5 M H2SO4.
The catalysts were characterized, and tested for esterification of LA with
ethanol to ethyl levulinate (EL). The effect of various
reaction parameters including reaction time, catalyst loading and molar ratio
of LA to ethanol on esterification of LA to EL were inspected. The catalyst with high concentration of acid
sites seemed suitable for LA esterification to EL.
Among the sulfated SiO2 catalysts
tested (0.5 M-SiO2, 1 M-SiO2,
3 M-SiO2 and 5 M-SiO2),
3 M-SiO2 exhibited the highest performance with the
optimum EL yield of 54% for reaction conducted at reflux
temperature for 4 h, 30% 3 M-SiO2 loading
and LA to ethanol molar ratio of 1:20. Besides, the
reusability of 3 M-SiO2 catalyst
for LA esterification with ethanol was examined for five
cycles. Esterification of LA with methanol and 1-butanol were
also carried out for methyl levulinate (ML) and butyl levulinate (BL)
productions with 69% and 40% of ML and BL yields,
respectively. This study demonstrates the potential of sulfated SiO2 catalyst
for levulinate ester production from LA at mild process condition.
Keywords: Esterification; levulinic acid; levulinate ester;
sulfated silica
ABSTRAK
Asid levulinik (LA)
ialah bahan kimia asas daripada biojisim dengan pelbagai aplikasi. Pengesteran bermangkin asid levulinik dengan alkil
alkohol menghasilkan ester levulinat yang dapat digunakan sebagai
bahan pewangi dan perasa, juga aditif bahan api.
Dalam kajian ini, satu siri pemangkin silika (SiO2)
sulfat telah dihasilkan melalui pengubahsuaian SiO2
bersama asid sulfurik (H2SO4)
berkepekatan yang berbeza; 0.5 M hingga 5 M. Pemangkin tersebut
telah dicirikan dan diuji bagi pengesteran LA dengan etanol kepada etil levulinat
(EL).
Kesan pelbagai parameter tindak balas termasuk
masa tindak balas, suapan pemangkin dan nisbah molar antara LA dan
etanol terhadap pengesteran LA kepada EL telah
dikaji. Pemangkin dengan kepekatan yang
tinggi bagi tapak asid tampak sesuai untuk pengesteran LA.
Antara SiO2 sulfat
yang telah diuji (0.5 M-SiO2, 1 M-SiO2,
3 M-SiO2, dan 5 M-SiO2),
3 M-SiO2 menunjukkan prestasi tertinggi
dengan hasil optimum EL sebanyak 54% untuk tindak balas yang
dijalankan pada suhu refluks selama 4 jam, menggunakan 30% 3 M-SiO2
suapan dan nisbah molar 1:20 antara LA dan etanol. Selain itu, kebolehgunaan semula 3 M-SiO2
telah dikaji untuk 5 kitaran. Pengesteran LA dengan
metanol dan 1-butanol untuk penghasilan metil levulinat (ML)
dan butil levulinat (BL) turut ditunjukkan dengan hasil masing-masing
sebanyak 69% dan 40% bagi ML dan BL.
Kajian ini menunjukkan potensi SiO2 sulfat
untuk penghasilan ester levulinat daripada LA pada
keadaan proses yang sederhana.
Kata kunci: Asid levulinik; ester levulinat;
pengesteran; silika sulfat
REFERENCES
Ahlkvist, J., Wärnå, J., Salmi, T. &
Mikkola, J.P. 2016. Heterogeneously catalyzed conversion of nordic pulp to levulinic and formic acids. Reaction Kinetics, Mechanisms and
Catalysis 119: 415-427.
Bart, H.J., Reidetschlager,
J., Schatka, K. & Lehmann, A. 1994. Kinetics of esterification of levulinic acid
with n-butanol by homogeneous catalysis. Industrial & Engineering
Chemistry Research 33: 21-25.
Chang, C., Xu, G. &
Jiang, X. 2012. Production
of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology 121: 93-99.
Cirujano, F.G., Corma, A.
& Llabrés i Xamena, F.X. 2015a. Conversion of levulinic acid into chemicals: Synthesis of biomass
derived levulinate esters over Zr-containing MOFs. Chemical Engineering
Science 124: 52-60.
Cirujano, F.G., Corma, A.
& Llabrés i Xamena, F.X. 2015b. Conversion of levulinic acid into chemicals: Synthesis of biomass
derived levulinate esters over Zr-containing MOFs. Chemical Engineering
Science 124: 52-60.
Démolis, A., Essayem, N.
& Rataboul, F. 2014. Synthesis and applications of alkyl levulinates. ACS
Sustainable Chemistry & Engineering 2: 1338-1352.
Dharne, S. & Bokade, V.V. 2011. Esterification of levulinic acid to n-butyl levulinate over
heteropolyacid supported on acid-treated clay. Journal of Natural Gas
Chemistry 20: 18-24.
Enumula, S.S., Gurram, V.R.B., Chada, R.R.,
Burri, D.R. & Kamaraju, S.R.R. 2017. Clean synthesis of alkyl levulinates
from levulinic acid over one pot synthesized WO3-SBA-16 catalyst. Journal of
Molecular Catalysis A: Chemical 426: 30-38.
Fernandes, D.R., Rocha, A.S., Mai, E.F., Mota,
C.J.A. & Teixeira da Silva, V. 2012. Levulinic acid
esterification with ethanol to ethyl levulinate production over solid acid
catalysts. Applied Catalysis A: General 425-426: 199-204.
Li, Y., Liu, H., Song, C., Gu, X., Li, H., Zhu,
W., Yin, S. & Han, C. 2013. The dehydration of fructose
to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin
in ionic liquid. Bioresource Technology 133: 347-353.
Liu, R., Chen, J., Huang, X., Chen, L., Ma, L.
& Li, X. 2013. Conversion of fructose into
5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic
acid-functionalized carbon materials. Green Chemistry 15:
2895-2903.
Maheria, K., Kozinski, J. & Dalai, A. 2013. Esterification of levulinic acid to n-Butyl levulinate over various
acidic zeolites. Catalysis Letters 143: 1220-1225.
Melero, J.A., Morales, G., Iglesias, J.,
Paniagua, M., Hernández, B. & Penedo, S. 2013. Efficient
conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic
mesostructured silicas. Applied Catalysis A: General 466:
116-122.
Musa, I.A. 2016. The effects
of alcohol to oil molar ratios and the type of alcohol on biodiesel production
using transesterification process. Egyptian Journal of Petroleum 25:
21-31.
Nandiwale, K.Y. &
Bokade, V.V. 2015a. Environmentally benign catalytic process for esterification of
renewable levulinic acid to various alkyl levulinates biodiesel. Environmental
Progress & Sustainable Energy 34: 795-801.
Nandiwale, K.Y. &
Bokade, V.V. 2015b. Esterification of renewable levulinic acid to n-butyl levulinate over modified
H-ZSM-5. Chemical Engineering & Technology 38: 246-252.
Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S.,
Joshi, P.N., Deshpande, S.S., Patil, V.S. & Bokade, V.V. 2013. Catalytic
upgrading of renewable levulinic acid to ethyl levulinate biodiesel using
dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied
Catalysis A: General 460-461: 90-98.
Neves, P., Russo, P.A.,
Fernandes, A., Antunes, M.M., Farinha, J., Pillinger, M., Ribeiro, M.F.,
Castanheiro, J.E. & Valente, A.A. 2014. Mesoporous zirconia-based
mixed oxides as versatile acid catalysts for producing bio-additives from
furfuryl alcohol and glycerol. Applied Catalysis A: General 487:
148-157.
Pasquale, G., Vázquez, P.,
Romanelli, G. & Baronetti, G. 2012. Catalytic upgrading of levulinic acid to ethyl
levulinate using reusable silica-included Wells-Dawson heteropolyacid as
catalyst. Catalysis Communications 18: 115-120.
Patil, C.R., Niphadkar, P.S., Bokade, V.V. &
Joshi, P.N. 2014. Esterification of levulinic acid to ethyl
levulinate over bimodal micro–mesoporous H/BEA zeolite derivatives. Catalysis Communications 43: 188-191.
Ramli, N.A.S. & Amin, N.A.S. 2017. Optimization of biomass conversion to levulinic acid in acidic
ionic liquid and upgrading of levulinic acid to ethyl levulinate. BioEnergy
Research 10: 50-63.
Ramli, N.A.S.,
Sivasubramaniam, D. & Amin, N.A.S. 2017a. Esterification of levulinic
acid using ZrO2-supported phosphotungstic acid catalyst for ethyl
levulinate production. BioEnergy Research 10: 1105-1116.
Ramli, N.A.S., Zaharudin,
N.H. & Amin, N.A.S. 2017b. Esterification of renewable levulinic acid to
levulinate esters using Amberlyst-15 as a solid acid catalyst. Jurnal
Teknologi 79: 137-142.
Siva Sankar, E., Mohan, V., Suresh, M., Saidulu,
G., David Raju, B. & Rama Rao, K.S. 2016. Vapor phase esterification of
levulinic acid over ZrO2/SBA-15 catalyst. Catalysis
Communications 75: 1-5.
Song, D., An, S., Lu, B.,
Guo, Y. & Leng, J. 2015. Arylsulfonic acid functionalized hollow mesoporous carbon spheres
for efficient conversion of levulinic acid or furfuryl alcohol to ethyl
levulinate. Applied Catalysis B: Environmental 179: 445-457.
Su, F., An, S., Song, D.,
Zhang, X., Lu, B. & Guo, Y. 2014. Heteropoly acid and ZrO2 bifunctionalized
organosilica hollow nanospheres for esterification and transesterification. Journal
of Materials Chemistry A 2: 14127-14138.
Su, F., Ma, L., Song, D.,
Zhang, X. & Guo, Y. 2013a. Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph) Si hybrid catalyst for methyl levulinate synthesis. Green
Chemistry 15: 885-890.
Su, F., Wu, Q., Song, D., Zhang, X., Wang, M.
& Guo, Y. 2013b. Pore morphology-controlled preparation of ZrO2- based
hybrid catalysts functionalized by both organosilica moieties and Keggin-type
heteropoly acid for the synthesis of levulinate esters. Journal of Materials
Chemistry A 1: 13209-13221.
Varkolu, M., Moodley, V., Potwana, F.S.W.,
Jonnalagadda, S.B. & van Zyl, W.E. 2016. Esterification of levulinic acid
with ethanol over bio-glycerol derived carbon–sulfonic-acid. Reaction
Kinetics, Mechanisms and Catalysis 120(1): 69-80.
Wang, Y., Vogelgsang,
F. & Román-Leshkov, Y. 2015. Acid-catalyzed oxidation of
levulinate derivatives to succinates under mild conditions. ChemCatChem 7: 916-920.
Ya’aini, N., Amin, N.A.S. & Asmadi,
M. 2012. Optimization of
levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresource Technology 116: 58-65.
Yadav, G.D. & Yadav, A.R. 2014. Synthesis of ethyl
levulinate as fuel additives using heterogeneous solid superacidic catalysts:
Efficacy and kinetic modeling. Chemical Engineering Journal 243:
556-563.
Yan, K., Wu, G., Wen, J. & Chen, A.
2013. One-step synthesis
of mesoporous H4SiW12O40-SiO2 catalysts
for the production of methyl and ethyl levulinate biodiesel. Catalysis
Communications 34: 58-63.
Zainol, M.M., Asmadi, M., Amin, N.A.S.
& Ahmad, K. 2016. Carbon cryogel
microsphere for ethyl levulinate production: Effect of carbonization
temperature and time. Journal of Engineering Science and Technology 11:
108-121.
*Corresponding
author; email; noraishah@cheme.utm.my
|