Sains Malaysiana 47(6)(2018): 1259–1268
http://dx.doi.org/10.17576/jsm-2018-4706-22
Proteomic
Analysis of Stored Core Oil Palm Trunk (COPT) Sap Identifying Proteins Related
to Stress, Disease Resistance and Differential Gene/Protein Expression
(Analisis
Proteomik Pengenalpastian Protein Sap Teras Batang Kelapa Sawit
(TBKS) Tersimpan Berkaitan Tekanan, Pertahanan Penyakit dan Perbezaan
Pengekspressan Gen/Protein)
MARHAINI MOSTAPHA1, NOORHASMIERA ABU JAHAR1, KAMALRUL AZLAN AZIZAN2, SARANI ZAKARIA1, WAN MOHD AIZAT2 & SHARIFAH NABIHAH SYED JAAFAR1*
1Bioresources
and Biorefinary Laboratory, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Institute of Systems
Biology (INBIOSIS), Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
4 October 2017/Accepted: 18 January 2018
ABSTRACT
Oil palm is the major crop grown and cultivated in various Asian
countries such as Malaysia, Indonesia and Thailand. The core of oil palm trunk
(COPT)
consists of high sugar content, hence suitable for synthesis of fine chemicals
and biofuels. Increase of sugar content was reported previously during
prolonged COPT storage. However, until now, there has been no
report on protein profiles during storage. Therefore, in this study, protein
expression of the COPT during the storage period of one
to six weeks was investigated using sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE) coupled with optical density
quantification and multivariate analyses for measuring differentially expressed
proteins. Accordingly, protein bands were subjected to tryptic digestion
followed by tandem mass spectrometry (nanoLC-MS/MS)
protein identification. The results from SDS-PAGE showed consistent
protein bands appearing across the biological replicates ranging from 10.455 to
202.92 kDa molecular weight (MW) regions. The findings from
the principal component analysis (PCA) plot illustrated the
separation pattern of the proteins at weeks 4 and 5 of storage, which was
influenced mainly by the molecular weights of 14.283, 25.543, 29.757, 30.549,
31.511, 34.585 and 84.395 kDa, respectively. The majority of these proteins are
identified as those involved in stress- and defense-related, disease
resistance, as well as gene/protein expression processes. Indeed, these
proteins were mostly upregulated during the later storage period suggesting
that long-term storage may influence the molecular regulation of COPT sap.
Keywords: Densitometry analysis; Elaeis guineensis; LC-MS;
principal component analysis; SDS-PAGE
ABSTRAK
Kelapa sawit merupakan antara tanaman utama di
negara Asia seperti Malaysia, Indonesia dan Thailand. Teras batang kelapa sawit (TBKS) mempunyai kandungan
gula yang tinggi, maka ia sesuai digunakan
untuk penghasilan bahan kimia ringkas dan bahan bakar bio. Peningkatan
kandungan gula pada sap daripada TBKS yang disimpan telah dilaporkan.
Walau bagaimanapun, setakat ini, kajian terhadap
perubahan profil protein TBKS semasa
penyimpanan masih belum diterokai. Maka dalam kajian ini,
pengekspresan protein TBKS yang tersimpan selama satu hingga enam
minggu telah dikaji menggunakan gel elektroforesis 1D (SDS-PAGE) ditambah dengan penentuan
ketumpatan optik dan analisis multivariat untuk mengukur jalur protein
yang berbeza. Jalur protein ini kemudiannya
dipotong menggunakan tripsin diikuti dengan pengenalpastian protein
menggunakan spektrometri jisim (nanoLC-MS/MS). Keputusan
daripada SDS-PAGE menunjukkan jalur protein yang konsisten merentasi
replikasi biologi dengan berat molekul protein daripada 10.455 kepada
202.92 kDa. Keputusan analisis prinsipal
komponen utama (PCA) menunjukkan corak pemisahan protein pada minggu ke-4
dan minggu ke-5 penyimpanan dipengaruhi oleh berat molekul 14.283,
25.543, 29.757, 30.549, 31.511, 34.585 dan 84.395 kDa. Majoriti
protein yang dikenal pasti merupakan protein yang terlibat dengan
tekanan dan pertahanan, protein yang berkaitan dengan perintang
penyakit, serta proses pengekspressan gen atau protein. Penambahan
tempoh penyimpanan telah menyebabkan protein ini dikawal naik sekaligus
mencadangkan kesan tempoh penyimpanan mempengaruhi kawal atur eskpresi
molekul protein sap TBKS.
Kata kunci: Analisis densitometri; analisis
kumpulan utama; Elaeis guineensis; LC-MS; SDS-PAGE
REFERENCES
Adeyemi, K.D., Mislan, N.,
Aghwan, Z.A., Sarah, S.A. & Sazili, A.Q. 2014. Myofibrillar protein profile of Pectoralis
major muscle in broiler chickens subjected to different freezing and thawing
methods. International Food Research Journal 21(3): 1089-1093.
Al-Obaidi, J.R., Mohd-Yusuf, Y., Razali, N.,
Jayapalan, J.J., Tey, C.C., Md-Noh, N., Junit, S.M., Othman, R.Y. & Hashim,
O.H. 2014. Identification of proteins of altered abundance in oil palm infected
with Ganoderma boninense. International Journal of Molecular Sciences 15(3): 5175-5192.
Barkan, A. & Small, I. 2014.
Pentatricopeptide repeat proteins in plants. Annual Review of Plant Biology 65:
415-442.
Berman, H.M., Westbrook,
J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. &
Bourne, P.E. 2000. The Protein Data Bank. Nucleic
Acids Research 28(1): 235-242.
Berrocal-Lobo, M., Ibañez,
C., Acebo, P., Ramos, A., Perez- Solis, E., Collada, C., Casado, R.,
Aragoncillo, C. & Allona I. 2011. Identification of a homolog of Arabidopsis DSP4(SEX4) in chestnut: Its induction and accumulation in
stem amyloplasts during winter or in response to the cold. Plant Cell
Environment 34(10): 1693-1704.
Bukhari, N.A., Loh, S.K.,
Bakar, N.A. & Ismail, M. 2017. Hydrolysis of residual starch from sago pith residue and its
fermentation to bioethanol. Sains Malaysiana 46(8): 1269-1278.
de Carvalho Silva, R., Carmo, L.S.T., Luis, Z.G.,
Silva, L.P., Scherwinski-Pereira, J.E. & Mehta, A. 2014. Proteomic
identification of differentially expressed proteins during the acquisition
of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.).
Journal of Proteomics 104: 112-127.
Department of Statistic Malaysia. 2016. Selected Agriculture
Indicators, Malaysia 2016. https://www.dosm.gov.my/v1/ index.php?r=column/cthemeByCat&cat=72&bul_id=Z3Nkh LSFk2VjZ5dkdUL1JQUGs4dz09&menu_id=Z0VTZGU1UH
BUT1VJMFlpaXRR0xpdz09. Accessed on May 2017.
Desiderio, C., Rossetti,
D.V., Iavarone, F., Messana, I. & Castagnola, M. 2010. Capillary electrophoresis-mass spectrometry:
Recent trends in clinical proteomics. Journal of Pharmaceutical and
Biomedical Analysis 53(5): 1161-1169.
Dickinson, R.J. & Keyse, S.M. 2006. Diverse physiological
functions for dual-specificity MAP kinase phosphatases. Journal of Cell
Science 119(22): 4607-4615.
Hage, D.S., Anguizola, J.A., Bi, C., Li, R., Matsuda, R.,
Papastavros, E., Pfaunmiller, E., Vargas, J. & Zheng, X. 2012. Pharmaceutical and biomedical applications of affinity chromatography: Recent
trends and developments. Journal of Pharmaceutical and Biomedical Analysis 69:
93-105.
Hashemi, A., Gharechahi, J., Nematzadeh, G., Shekari, F.,
Hosseini, S.A. & Salekdeh, G.H. 2016. Two-dimensional
blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in
response to salt stress. Journal of Plant Physiology 200: 90-101.
Hood,
L. & Rowen, L. 2013. The human genome project: Big science transforms
biology and medicine. Genome Medicine 5(9): 79.
Hunter,
T. 2009. Tyrosine phosphorylation: Thirty years and counting. Current
Opinion in Cell Biology 21(2): 140-146.
Jahar, N.A., Pua, G., Wong, J.C., Mostapha, M., Zakaria, S.,
Chia, C.H. & Jaafar, S.N.S. 2017. Utilization of core
oil palm trunk waste to methyl levuinate: Physical and chemical
characterizations. Waste and Biomass Valorization pp. 1-6.
Jeffery
Daim, L.D., Ooi, T.E.K., Ithnin, N., Mohd Yusof, H., Kulaveerasingam, H., Abdul
Majid, N. & Karsani, S.A. 2015. Comparative proteomic analysis of oil palm
leaves infected with Ganoderma boninense revealed changes in proteins
involved in photosynthesis, carbohydrate metabolism, and immunity and defense. Electrophoresis 36(15): 1699-1710.
Kushwaha,
H.R., Singh, A.K., Sopory, S.K., Singla-Pareek, S.L. & Pareek, A. 2009.
Genome wide expression analysis of CBS domain containing proteins in Arabidopsis
thaliana (L.) Heynh and Oryza sativa L. reveals their
developmental and stress regulation. BioMed. Central Genomics 10: 200.
Lai, W.H., Leo, T.K., Zainal, Z. & Daud, F. 2014. Preliminary proteomic characterisation of primodia and vegetative dikaryotic
mycelial cells from Tiger’s milk mushroom (Lignosus rhinocerus). Sains
Malaysiana 43(8): 1133-1138.
Liu, B., Fan, J., Zhang, Y., Mu, P., Wang, P., Su, J., Lai,
H., Li, S., Feng, D., Wang, J. & Wang, H. 2012. OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought
stress responses in transgenic tobacco and rice plants. Plant Cell Reports 31(6):
1021-1032.
Lurin,
C., Andres, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyere, C., Caboche,
M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M.,
Martin-Magniette, M.L., Mireau, H., Peeters, N., Renou, J.P., Szurek, B.,
Taconnat, L. & Small, I. 2004. Genome-wide analysis of Arabidopsis
pentatricopeptide repeat proteins reveals their essential role in organelle
biogenesis. The Plant Cell 16(8): 2089-2103.
Malaysia Palm Oil Board.
Malaysia Palm Oil Industry: A report. http://www.palmoilworld.org/about
_malaysian-industry. html. Accessed on
20 October 2016.
Martin, G.B., Bogdanove, A.J. & Sessa, G. 2003.
Understanding the functions of plant disease resistance proteins.
Annual Review of Plant Biology 54(1): 23-61.
Mostapha,
M., Jahar, N.A., Chin, S.X., Jaafar, S.N.S., Zakaria, S., Aizat, W.M. &
Azizan, K.A. 2016. Effect of zeolite catalyst on sugar dehydration for 5
Hydroxymethylfurfural synthesis. American Institute
of Physics Conference Proceedings 1784(1): 040026.
Mostapha,
M., Jahar, N.A., Zakaria, S., Aizat, W.M., Azizan, K.A. & Jaafar, S.N.S.
2017. Metabolite profiling of core oil palm trunk (COPT) sap: The effects of
different storage durations, conditions and temperatures. Journal of Oil
Palm Research 30(1): 111-120.
Nualkaew, S., Saelim, H., Tiwawech, D., Parvez, T.P.I. &
Phongdara, A. 2017. Role of cytochrome
P450 monooxygenase in the bioactivation of aflatoxin B1. Sains
Malaysiana 46(9): 1499-1503.
Nur
Azira, T. & Amin, I. 2012. Differentiation of bovine and porcine
gelatins in processed products via sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS PAGE) and principal component analysis
(PCA) techniques. International Food Research Journal 19(3):
1175-1180.
Segonzac, C., Macho, A.P., Sanmartín,
M., Ntoukakis, V., Sánchez-Serrano, J.J. & Zipfel, C.
2014. Negative control of BAK1 by protein phosphatase 2A during
plant innate immunity. The European Molecular Biology Organization
Journal 33: 2069-2079.
Shankar, A., Agrawal, N., Sharma, M., Pandey, A. & Pandey,
G.K. 2015. Role of protein tyrosine
phosphatases in plants. Current Genomics 16(4): 224-236.
Smith
P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Haberl,
H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath,
N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F. &
Tubiello, F. 2014. Agriculture, forestry and other land use (AFOLU). In Climate
Change 2014: Mitigation of Climate Change. Contribution of Working Group III to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner,
S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann,
B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T. & Minx, J.C.
Cambridge: Cambridge University Press.
Sun, H. & Tonks, N.K. 1994. The coordinated action of protein tyrosine phosphatases and kinases
in cell signaling. Trends in Biochemicals Science 19(11):
480-485.
Wang, W., Vignani, R., Scali, M. & Cresti, M. 2006. A universal and rapid protocol for protein extraction from
recalcitrant plant tissues for proteomic analysis. Electrophoresis 27(13):
2782-2786.
Weiser,
D.C. & Shenolikar, S. 2003. Use of protein phosphatase inhibitors.
Curr. Protoc. Mol. Biol. 62(1): 18.10.1-18.10-13.
Wormit,
A., Butt, S.M., Chairam, I., McKenna, J.F., Nunes-Nesi, A., Kjaer,
L., O'Donnelly, K., Fernie, A.R., Woscholski, R., Barter, M.C. &
Hamann, T. 2012. Osmosensitive changes of carbohydrate metabolism
in response to cellulose biosynthesis inhibition. Plant Physiology
159(1): 105-117.
Yamada,
H., Tanaka, R., Sulaiman, O., Hashim, R., Hamid, Z.A.A., Yahya, M.K.A., Kosugi,
A., Arai, T., Murata, Y., Nirasawa, S., Yamamoto, K., Ohara, S., Yusof, M.N.M.,
Ibrahim, W.A. & Mori, Y. 2010. Old oil palm trunk: A promising source of
sugars for bioethanol production. Biomass and Bioenergy 34: 1608-1613.
Žd'árská,
M., Zatloukalová, P., Benítez, M., Šedo, O.,
Potěšil, D., Novák, O., Svačinová,
J., Pešek, B., Malbeck, J., Vašíčková,
J., Zdráhal, Z. & Hejátko, J. 2013. Proteome analysis
in Arabidopsis reveals shoot- and root-specific targets
of cytokinin action and differential regulation of hormonal homeostasis.
Plant Physiology 161(2): 918-930.
*Corresponding
authors; email: nabihah@ukm.edu.my
|