Sains Malaysiana 47(7)(2018): 1591–1597
http://dx.doi.org/10.17576/jsm-2018-4707-30
Improvement
of Colloidal Stability in Colloidal Processing for Highly Translucent,
Nanosized Zirconia
(Peningkatan
Kestabilan Koloid dalam Pemprosesan Koloid bagi Zirkonia Berkelutcahayaan
Tinggi, Bersaiz Nano)
CHUIN HAO CHIN1, ANDANASTUTI MUCHTAR1*, CHE HUSNA AZHARI1, MASFUEH RAZALI2 & MOHAMED ABORAS1
1Department of Mechanical
and Materials Engineering, Faculty of Engineering and Built Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Periodontology
Department, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja
Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
Received: 14 December
2017/Accepted: 23 February 2018
ABSTRACT
This study aimed to improve the
colloidal stability of yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP)
suspension through colloidal processing to obtain highly translucent Y-TZP.
Agglomeration is often the main complication in the processing of nanosized Y-TZP as it deteriorates mechanical and optical properties. Thus,
colloidal processing is necessary to mitigate the agglomeration in Y-TZP.
The colloidal stability of Y-TZP suspension plays a key role for
the success of colloidal processing. In this study, colloidal processing was
conducted at several stages, namely, dispersant addition, pH adjustment and
sedimentation. Changes in particle size and zeta potential at various stages
were recorded. The suspensions were then slip-casted to form green bodies.
Green bodies were sintered and characterized for density and translucency. The
results showed that dispersant addition followed by pH adjustment effectively
dispersed soft agglomerates by introducing electrosteric stabilization, whereas
sedimentation successfully segregated hard agglomerates and contributed
excellent colloidal stability. With high colloidal stability, the translucency
of Y-TZP was improved by approximately 30%. This study
demonstrated different colloidal processing stages and proved that high
colloidal stability and fine particle size are vital to produce highly
translucent Y-TZP.
Keywords: Colloidal stability; slip
casting; translucency; zirconia
ABSTRAK
Kajian ini bertujuan meningkatkan
kestabilan koloid polihablur zirkonia tetragonal separa stabil oleh yttria (Y-TZP)
melalui pemprosesan berkoloid untuk menghasilkan Y-TZP berkelutcahayaan
tinggi. Pengaglomeratan merupakan satu masalah dalam pemprosesan Y-TZP bersaiz nano kerana pengaglomeratan sentiasa menjejaskan ciri
mekanik dan optik. Justeru, pemprosesan berkoloid diperlukan untuk mengurangkan
pengaglomeratan dalam Y-TZP. Kestabilan koloid ampaian Y-TZP telah memainkan peranan yang penting dalam menjayakan pemprosesan
berkoloid. Dalam kajian ini, pemprosesan berkoloid telah dijalankan melalui
beberapa peringkat iaitu penambahan bahan penyerak, pelarasan pH dan
pemendapan. Perubahan dalam saiz zarah dan keupayaan zeta pada tahap yang
berbeza telah dicatat. Ampaian Y-TZP telah diguna untuk
menghasilkan jasad anum melalui kaedah tuangan slip. Jasad anum telah disinter
dan seterusnya ketumpatan dan kelutcahayaan spesimen diuji. Keputusan uji kaji
menunjukkan aglomerat lembut telah berjaya dipisah melalui penstabilan
elektrosterik dengan penambahan bahan penyerak dan pelarasan pH. Proses
pemendapan yang seterusnya berjaya memisahkan aglomerat keras dan meningkatkan
kestabilan koloid. Dengan kestabilan koloid yang baik, kelutcahayaan Y-TZP telah ditingkatkan sebanyak 30%. Kajian ini telah menunjukkan
peringkat pemprosesan berkoloid yang berbeza dan membuktikan kestabilan koloid
yang tinggi dan saiz zarah yang kecil adalah penting untuk penghasilan Y-TZP berkelutcahayaan tinggi.
Kata
kunci: Kelutcahayaan; kestabilan koloid; tuangan slip; zirconia
REFERENCES
Amat, N.F.,
Muchtar, A., Ghazali, M.J. & Yahaya, N. 2014. Suspension stability and
sintering influence on yttria-stabilized zirconia fabricated by colloidal
processing. Ceramics International 40(4): 5413-5419.
Baldissara,
P., Llukacej, A., Ciocca, L., Valandro, F.L. & Scotti, R. 2010.
Translucency of zirconia copings made with different cad/cam systems. The
Journal of Prosthetic Dentistry 104(1): 6-12.
Bowen,
P., Carry, C., Luxembourg, D. & Hofmann, H. 2005. Colloidal processing and
sintering of nanosized transition aluminas. Powder Technology 157(1-3):
100-107.
Chen, Y.M., Smales, R.J., Yip, K.H.K. & Sung, W.J. 2008.
Translucency and biaxial flexural strength of four ceramic core materials. Dental
Materials 24(11): 1506-1511.
Chin, C.H., Muchtar, A.,
Azhari, C.H., Razali, M. & Aboras, M. 2015. Optimization of pH and
dispersant amount of Y-TZP suspension for colloidal stability. Ceramics
International 41(8): 9939-9946.
Groza, J.R. 1999.
Nanosintering. Nanostructured Materials 12(5-8): 987-992.
Heffernan, M.J.,
Aquilino, S.A., Diaz-Arnold, A.M., Haselton, D.R., Stanford, C.M. & Vargas,
M.A. 2002. Relative translucency of six all-ceramic systems. Part I: Core
materials. The Journal of Prosthetic Dentistry 88(1): 4-9.
Jiang, L., Liao, Y.,
Wan, Q. & Li, W. 2011. Effects of sintering temperature and particle size
on the translucency of zirconium dioxide dental ceramic. Journal of
Materials Science: Materials in Medicine 22(11): 2429-2435.
Kelly, J.R., Nishimura,
I. & Campbell, S.D. 1996. Ceramics in dentistry: Historical roots and
current perspectives. The Journal of Prosthetic Dentistry 75(1): 18-32.
Kim, M.J., Ahn, J.S.,
Kim, J.H., Kim, H.Y. & Kim, W.C. 2013. Effects of the sintering conditions
of dental zirconia ceramics on the grain size and translucency. Journal of
Advanced Prosthodontics 5(2): 161-166.
Leong, C.H., Muchtar,
A., Tan, C.Y., Razali, M. & Chin, C.H. 2017. Sintering of hydroxyapatite
under nitrogen atmosphere for improved microhardness. Sains Malaysiana 46(9):
1635- 1640.
Lewis, J.A. 2000.
Colloidal processing of ceramics. Journal of the American Ceramic Society 83(10):
2341-2359.
Liu, Y. & Gao, L.
2003. Deflocculation study of aqueous nanosized Y-TZP suspensions. Materials
Chemistry and Physics 78(2): 480-485.
Ma, J. & Lim, L.C.
2002. Effect of particle size distribution on sintering of agglomerate-free
submicron alumina powder compacts. Journal of the European Ceramic Society 22(13):
2197-2208.
Muchtar, A. & Lim,
L.C. 1998. Indentation fracture toughness of high purity submicron alumina. Acta
Materialia 46(5): 1683-1690.
Ozturk, O., Uludag, B.,
Usumez, A., Sahin, V. & Celik, G. 2008. The effect of ceramic thickness and
number of firings on the color of two all-ceramic systems. The Journal of
Prosthetic Dentistry 100(2): 99-106.
Rafferty, A., Alsebaie,
A.M., Olabi, A.G. & Prescott, T. 2009. Properties of
zirconia-toughened-alumina prepared via powder processing and colloidal
processing routes. Journal of Colloid and Interface Science 329(2):
310-315.
Rami, M.L., Meireles,
M., Cabane, B. & Guizard, C. 2009. Colloidal stability for concentrated
zirconia aqueous suspensions. Journal of the American Ceramic Society 92:
50-56.
Stawarczyk, B., Özcan,
M., Hallmann, L., Ender, A., Mehl, A. & Hämmerlet, C.F. 2012. The effect of
zirconia sintering temperature on flexural strength, grain size, and contrast
ratio. Clinical Oral Investigations 17(1): 1-6.
Sulaiman, T.A.,
Abdulmajeed, A.A., Donovan, T.E., Ritter, A.V., Vallittu, P.K., Närhi, T.O.
& Lassila, L.V. 2015. Optical properties and light irradiance of monolithic
zirconia at variable thicknesses. Dental Materials 31(10): 1180-1187.
Ting, J.M. & Lin,
R.Y. 1995. Effect of particle size distribution on sintering. Journal of
Materials Science 30(9): 2382-2389.
Tong, H., Tanaka, C.B.,
Kaizer, M.R. & Zhang, Y. 2016. Characterization of three commercial Y-TZP
ceramics produced for their high-translucency, high-strength and high-surface
area. Ceramics International 42(1, Part B): 1077-1085.
Trunec, M. &
Pouchly, V. 2016. Colloidal processing of low-concentrated zirconia
nanosuspension using osmotic consolidation. Ceramics International 42(10):
11838-11843.
Wollmershauser, J.A.,
Feigelson, B.N., Gorzkowski, E.P., Ellis, C.T., Goswami, R., Qadri, S.B.,
Tischler, J.G., Kub, F.J. & Everett, R.K. 2014. An extended hardness limit
in bulk nanoceramics. Acta Materialia 69: 9-16.
Xie, Z., Ma, J., Xu, Q.,
Huang, Y. & Cheng, Y.B. 2004. Effects of dispersants and soluble
counter-ions on aqueous dispersibility of nano-sized zirconia powder. Ceramics
International 30(2): 219-224.
Zakaria, H., Muhamad,
N., Sulong, A.B., Ibrahim, M.H.I. & Foudzi, F. 2014. Moldability
characteristics of 3 mol% yttria stabilized zirconia feedstock for micro-powder
injection molding process. Sains Malaysiana 43(1): 129-136.
Zhang, H., Li, Z., Kim,
B.N., Morita, K., Yoshida, H., Hiraga, K. & Sakka, Y. 2012. Effect of
alumina dopant on transparency of tetragonal zirconia. Journal of
Nanomaterials 2012: 5.
Zhang, Y. 2014. Making
yttria-stabilized tetragonal zirconia translucent. Dental Materials 30(10):
1195-1203.
*Corresponding author; email: muchtar@ukm.edu.my
|