Sains Malaysiana 47(9)(2018): 2195–2204

http://dx.doi.org/10.17576/jsm-2018-4709-30

 

Variance Targeting Estimator for GJR-GARCH under Model’s Misspecification

(Penganggar Sasaran Varians untuk GJR-GARCH di bawah Model Spesifikasi Ralat)

 

MUHAMMAD ASMU’I ABDUL RAHIM, SITI MERIAM ZAHARI* & S. SARIFAH RADIAH SHARIFF

 

Centre for Statistical and Decision Science Studies, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 45450 UiTM Shah Alam, Selangor Darul Ehsan, Malaysia

 

Received: 21 November 2017/Accepted: 17 May 2018

 

ABSTRACT

 

The application of the Variance Targeting Estimator (VTE) is considered in GJR-GARCH(1,1) model, under three misspecification scenarios, which are, model misspecification, initial parameters misspecification and innovation distribution assumption misspecification. A simulation study has been performed to evaluate the performance of VTE compared to commonly used, which is the Quasi Maximum Likelihood Estimator (QMLE). The data has been simulated under GJR-GARCH(1,1) process with initial parameters ω = 0.1, α = 0.05, β = 0.85, γ = 0.1 and an innovation with a true normal distribution. Three misspecification innovation assumptions, which are normal distribution, Student-t distribution and the GED distribution have been used. Meanwhile, for the misspecified initial parameters, the first initial parameters have been setup as ω = 1, α = 0, β = 0 and γ = 0. Furthermore, the application of VTE as an estimator has also been evaluated under real data sets and three selected indices, which are the FTSE Bursa Malaysia Kuala Lumpur Index (FBMKLCI), the Singapore Straits Time Index (STI) and the Jakarta Composite Index (JCI). Based on the results, VTE has performed very well compared to QMLE under both simulation and the applications of real data sets, which can be considered as an alternative estimator when performing GARCH model, especially the GJR-GARCH.

 

Keywords: GJR-GARCH; QMLE; variance targeting; volatility

 

ABSTRAK

 

Penggunaan Penganggar Sasaran Varians (VTE) telah dipertimbangkan terhadap model GJR-GARCH (1,1) menggunakan tiga senario spesifikasi ralat, iaitu terhadap model, parameter awalan dan andaian taburan hingar. Kajian simulasi telah dilakukan untuk menilai prestasi VTE berbanding dengan Penganggar Kebolehjadian Kuasa Maksimum (QMLE). Data telah disimulasikan di bawah proses GJR-GARCH (1,1) dengan parameter awalan, ω = 0.1, α = 0.05, β = 0.85, γ = 0.1 dan hingar yang dianggap mempunyai taburan sebenar yang normal. Tiga andaian telah digunakan terhadap spesifikasi ralat bagi taburan hingar iaitu taburan normal, taburan t dan taburan GED. Sementara itu, spesifikasi ralat bagi parameter awalan telah ditetapkan sebagai ω = 1, α = 0, β = 0 dan γ = 0. Selain itu, penggunaan VTE sebagai penganggar juga telah dinilai menggunakan data sebenar iaitu Indeks FTSE Bursa Malaysia Kuala Lumpur (FBMKLCI), Indeks Masa Selat Singapura (STI) dan Indeks Komposit Jakarta (JCI). Berdasarkan keputusan analisis, VTE menunjukkan hasil anggaran yang lebih baik berbanding QMLE bagi kedua-dua kajian simulasi dan kajian berasaskan data sebenar. Oleh itu, VTE boleh digunakan sebagai penganggar alternatif bagi model GARCH, terutamanya GJR-GARCH.

 

Kata kunci: GJR-GARCH; QMLE; penganggar sasaran varians (VTE); volatility


REFERENCES

 

Abdul Rahim, M.A., Zahari, S.M. & Shariff, S.S.R. 2017. Performance of variance targeting estimator (VTE) under misspecified error distribution assumption. Pertanika Journal of Science and Technology 25(2): 607-618.

Almeida, D.D. & Hotta, L.K. 2014. The leverage effect and the asymmetry of the error distribution in GARCH-based models: The case of Brazilian market related series. Pesquisa Operacional 34(2): 237-250.

Black, F. 1976. Studies in stock price volatility changes. Proceedings of the 1976 Business.

Bollerslev, T. 1987. A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics 16(3): 542-547.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3): 307-327.

Bollerslev, T. & Wooldridge, J.M. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11(2): 143-172.

Boudt, K., Danielsson, J. & Laurent, S. 2013. Robust forecasting of dynamic conditional correlation GARCH models. International Journal of Forecasting 29(2): 244-257.

Boudt, K. & Croux, C. 2010. Robust M-estimation of multivariate GARCH models. Computational Statistics & Data Analysis 54(11): 2459-2469.

Cappiello, L., Engle, R.F. & Sheppard, K. 2006. Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics 4(4): 537-572.

Casarin, R., Chang, C.L., Jiménez-Martín, J.Á., McAleer, M. & Pérez-Amaral, T. 2013. Risk management of risk under the Basel Accord: A Bayesian approach to forecasting value-at-risk of VIX futures. Mathematics and Computers in Simulation 94: 183-204.

Dutta, A. 2014. Modelling volatility: Symmetric or asymmetric Garch models. Journal of Statistics: Advances in Theory and Applications 12(2): 99-108.

Engle, R.F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society 50(4): 987-1007.

Engle, R.F. & Mezrich, J. 1996. GARCH for groups: A round-up of recent developments in Garch techniques for estimating correlation. Risk 9(8): 36-40.

Engle, R.F. & Ng, V.K. 1993. Measuring and testing the impact of news on volatility. The Journal of Finance 48(5): 1749-1778.

Foucault, T., Hombert, J. & Roşu, I. 2016. News trading and speed. The Journal of Finance 71(1): 335-382.

Francq, C. & Zakoďan, J.M. 2010. GARCH Models: Structure, Statistical Inference and Financial Applications. New York: John Wiley & Sons.

Francq, C., Horváth, L. & Zakoďan, J.M. 2016. Variance targeting estimation of multivariate GARCH models. Journal of Financial Econometrics 14(2): 353-382.

Francq, C., Horvath, L. & Zakoďan, J.M. 2009. Merits and drawbacks of variance targeting in GARCH models. Journal of Financial Econometrics 9(4): 619-656.

Glosten, L.R., Jagannathan, R. & Runkle, D.E. 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48(5): 1779-1801.

Iqbal, F. 2013. Robust estimation of the simplified multivariate GARCH model. Empirical Economics 44(3): 1-20.

Islam, R. & Sultana, N. 2015. Day of the week effect on stock return and volatility: Evidence from Chittagong stock exchange. European Journal of Business and Management 7(3): 165-172.

Lee, S.W. & Hansen, B.E. 1994. Asymptotic theory for the GARCH (1, 1) quasi-maximum likelihood estimator. Econometric Theory 10(1): 29-52.

Lim, C.M. & Sek, S.K. 2013. Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. Procedia Economics and Finance 5: 478-487.

Ling, S. & McAleer, M. 2002. Stationarity and the existence of moments of a family of GARCH processes. Journal of Econometrics 106(1): 109-117.

Maheu, J.M. & McCurdy, T.H. 2004. News arrival, jump dynamics, and volatility components for individual stock returns. The Journal of Finance 59(2): 755-793.

Mehdian, S. & Perry, M.J. 2001. The reversal of the Monday effect: New evidence from US equity markets. Journal of Business Finance & Accounting 28(78): 1043-1065.

Mukherjee, K. 2008. M-estimation in GARCH models. Econometric Theory 24(6): 1530-1553.

Muler, N. & Yohai, V.J. 2008. Robust estimates for GARCH models. Journal of Statistical Planning and Inference 138(10): 2918-2940.

Narayan, P.K. & Smyth, R. 2005. Cointegration of stock markets between New Zealand, Australia and the G7 economies: Searching for co-movement under structural change. Australian Economic Papers 44(3): 231-247.

Nelson, D.B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society 59(2): 347-370.

Nelson, D.B. & Foster, D.P. 1995. Filtering and forecasting with misspecified ARCH models II: making the right forecast with the wrong model. Journal of Econometrics 67(2): 303-335.

Newey, W.K. & Steigerwald, D.G. 1997. Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica: Journal of the Econometric Society 65(3): 587-599.

Oh, S.L., Lau, E., Puah, C.H. & Mansor, S.A. 2010. Volatility co-movement of Asean-5 equity markets. Journal of Advanced Studies in Finance 1(1): 23-30.

Pedersen, R.S. & Rahbek, A. 2014. Multivariate variance targeting in the BEKK–GARCH model. The Econometrics Journal 17(1): 24-55.

Peng, L. & Yao, Q. 2003. Least absolute deviations estimation for ARCH and GARCH models. Biometrika 90(4): 967-975.

Shamiri, A. & Isa, Z. 2009. Modeling and forecasting volatility of the Malaysian stock markets. Journal of Mathematics and Statistics 5(3): 234-240.

Thalassinos, E.I., Ugurlu, E. & Muratoglu, Y. 2014. Comparison of forecasting volatility in the Czech Republic stock market. Applied Economics and Finance 2(1): 11-18.

Tsukuda, Y., Shimada, J. & Miyakoshi, T. 2017. Bond market integration in East Asia: Multivariate GARCH with dynamic conditional correlations approach. International Review of Economics & Finance 51: 193-213.

Vaynman, I. & Beare, B.K. 2014. Stable limit theory for the variance targeting estimator. In Essays in Honor of Peter CB Phillips, edited by Chang, Y.S., Fomby, T.B. & Park, J.Y. Bingley: Emerald Group Publishing Limited. pp. 639-672.

Verhoeven, P. & McAleer, M. 2004. Fat tails and asymmetry in financial volatility models. Mathematics and Computers in Simulation 64(3): 351-361.

Yaya, O.S., Olubusoye, O.E. & Ojo, O.O. 2014. Estimates and forecasts of GARCH model under misspecified probability distributions: A Monte Carlo simulation approach. Journal of Modern Applied Statistical Methods 13(2): 479-492.

 

 

*Corresponding author; email: mariam@tmsk.uitm.edu.my

 

 

 

 

 

 

 

 

previous