Sains Malaysiana 48(2)(2019): 393–399

http://dx.doi.org/10.17576/jsm-2019-4802-17

 

Insight Observation into Rapid Discoloration of Batik Textile Effluent by in situ Formations of Zero Valent Iron

(Pemerhatian Celik Akal pada Penyahwarnaan Pesat Efluen Tekstil Batik dengan Pembentukan in situ Ferum Bervalensi Sifar)

 

MOHD SHAIFUL SAJAB1,2*, NUR NADIA NAZIRAH ISMAIL1,2, JUDE SANTANARAJ1,2, ABDUL WAHAB MOHAMMAD1,2, HASSIMI ABU HASSAN1,2, CHIN HUA CHIA3, SARANI ZAKARIA3 & AN'AMT MOHAMED NOOR4

 

1Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Fakulti Agro Industri dan Sumber Asli, Universiti Malaysia Kelantan, Karung Berkunci 36, Pengkalan Chepa, 16100 Kota Bharu, Kelantan Darul Naim, Malaysia

 

Received: 9 July 2018/Accepted: 1 October 2018

 

ABSTRACT

This study aimed to investigate the discoloration of textile effluent from batik industrial wastewater by Fenton oxidation process using Fe(II), Fe(III) and in situ formation of zero valent iron (Fe(0)). The controlled parameters indicate the Fenton oxidation reaction is ideal on effluent at pH5, concentration colour of 4005 mg/L Pt-Co units using 0.5 mg/mL of catalyst dosage to meet the regulation for Malaysian quality water standard. The optimization of Fe(0) precursors, Fe(II) shows a higher discoloration efficiency in comparison with Fe(III). The synthesized particles of Fe(0) shows a nano spherical structure in the diameter range of 20-70 nm, aggregated and into a chain-like formation. Subsequently, the performance of Fe(0) was improved up to 97% discoloration in comparison with 89% discoloration by Fe(II). Whereas, the in situ formation of Fe(0) in batik effluent shows a complete discoloration ascribable to higher reactivity than partially oxidized of synthesized ex situ Fe(0). On top of that, in situ Fe(0) performed at the expeditious reaction in less than five min. Additionally, the regeneration of Fe(0), Fe(II) and Fe(III) show a potential of catalyst recyclability up to three cycles of Fenton oxidation but with a tolerable reduction to 62.1% of effluent discoloration.

 

Keywords: Colour removal; Fe(0); Fenton oxidation; in situ nanoparticles; textile effluent; water remediation

 

ABSTRAK

Kajian ini bermatlamat untuk mengkaji penyahwarnaan efluen tekstil daripada air sisa industri batik melalui proses pengoksidaan Fenton menggunakan Fe(II), Fe(III) dan pembentukan in situ ferum bervalensi sifar (Fe(0)). Parameter terkawal menunjukkan tindak balas pengoksidaan Fenton adalah sesuai ke atas efluen pada pH5, warna berkepekatan 4005 mg/L Pt-Co unit dengan menggunakan 0.5 mg/mL dos pemangkin bagi memenuhi pengawalan piawaian kualiti air Malaysia. Pengoptimuman bagi pelopor Fe(0), menunjukkan Fe(II) memberikan penyahwarnaan yang lebih cekap berbanding Fe(III). Zarah Fe(0) yang tersintesis menunjukkan struktur nano bersfera berdiameter dalam julat 20-70 nm, terkumpul dan membentuk struktur seperti berantai. Kemudian, prestasi Fe(0) telah meningkat sehingga 70% penyahwarnaan berbanding 89% penyahwarnaan menggunakan Fe(II). Sementara itu, pembentukan in situ Fe(0) di dalam efluen batik menunjukkan penyahwarnaan lengkap disebabkan tindak balas yang lebih tinggi berbanding ex situ Fe(0) tersintesis separa teroksida. Malah, in situ Fe(0) terhasil pada tindak balas yang pantas dalam masa kurang lima minit. Tambahan lagi, penjanaan semula Fe(0), Fe(II) dan Fe(III) menunjukkan potensi pengitaran semula pemangkin sehingga tiga pusingan pengoksidaan Fenton dengan penurunan yang boleh diterima kepada 62.1% penyahwarnaan.

 

Kata kunci: Efluen tekstil; nanopartikel in situ; pengoksidaan Fenton; penyingkiran warna pemulihan air

REFERENCES

Abou-elela, S.I., Ali, M.E.M. & Ibrahim, H.S. 2016. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon. Arab. J. Chem. 9: 511-517.

Ahmad, A.L., Harris, W.A., Syafiee & Seng, O.B. 2002. Removal of dye from wastewater of textile industry using membrane technology. J. Teknol. 36: 31-44.

Birgani, P.M., Ranjbar, N., Abdullah, R.C., Wong, K.T., Lee, G., Ibrahim, S., Park, C., Yoon, Y. & Jang, M. 2016. An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shellbased activated carbon application. J. Environ. Manage. 184(2): 229-239.

Bolobajev, J., Kattel, E., Viisimaa, M., Goi, A., Trapido, M., Tenno, T. & Dulova, N. 2014. Reuse of ferric sludge as an iron source for the Fenton-based process in wastewater treatment. Chem. Eng. J. 255: 8-13.

Chatterjee, S., Lim, S.R. & Woo, S.H. 2010. Removal of reactive black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J. 160(1): 27-32.

Department of Environment (DOE), Malaysia. 2011. Environmental Quality. Sewage and Industrial Effluent. Regulation 1979. Third Schedule Environmental Quality Act. 1974.

Duarte, F., Morais, V., Maldonado-Hódar, F.J. & Madeira, L.M. 2013. Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem. Eng. J. 232: 34-41.

Ertugay, N. & Acar, F.N. 2017. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton's oxidation: Kinetic study. Arab. J. Chem. 10: S1158-S1163.

Feitz, J.A., Joo, S.H., Huan, J., Sun, Q., Sedlak, D.L. & Waite, T.D., 2005. Oxidative transformation of contaminants using colloidal zero-valent iron. Colloid. Surface. A. 265: 88-94.

Jung, Y.S., Lim, W.T., Park, J.Y. & Kim, Y.H. 2009. Effect of pH on Fenton and Fenton-like oxidation. Environ. Technol. 30(2): 183-190.

Khalik, W.F., Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. & Ridwan, F. 2015. Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana 44(4): 607-612.

Kusic, H., Koprivanac, N., Horvat, S., Bakija, S. & Bozic, A.L. 2009. Modeling dye degradation kinetic using dark- and photo-Fenton type processes. Chem. Eng. J. 155: 144-154.

Kusic, H., Koprivanac, N. & Srsan, L. 2006. Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. J. Photoc. Photobio. A. 181: 195-202.

Lin, S.H. & Chen, M.L. 1997. Purification of textile wastewater effluents by a combined Fenton process and ion exchange. Desalination 109: 121-130.

Mesquita, I., Matos, L.C., Duarte, F., Maldonado-Hodar, F.J., Mendes, A. & Madeira, L.M. 2012. Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. J. Hazard. Mater. 237-238: 30-37.

Nawaz, M.S. & Ahsan, M. 2014. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria. Eng. J. 53: 717-722.

Ong, S.A., Ho, L.N., Wong, Y.S. & Pakri, K.A.M. 2017. Comparative study on the biodegradation of mixed remazol dyes wastewater between integrated anaerobic/aerobic and aerobic sequencing batch reactors. Rend. Lincei. 28(3): 497-501.

Pereira, L. & Alves, M. 2012. Dyes - environmental impact and remediation. In Environmental Protection Strategies for Sustainable Development, edited by Malik, A. & Grohmann, E. Springer: Dordrecht. pp. 111-162.

Pereira, W.S. & Freire, R.S. 2006. Azo dye degradation by recycled waste zero-valent iron powder. J. Braz. Chem. Soc. 17(5): 832-838.

Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D. & Lowry, G.V. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41(1): 284-290.

Ramlee, N.A., Mohd Rodhi, M.N., Anak Brandah, A.D., Anuar, A., Alias, N.H. & Tengku Mohd, T.A. 2014. Potential of integrated membrane bioreactor in batik dye degradation - A review. App. Mech. Mater. 575: 50-54.

Rosická, D. & Sembera, J. 2011. Influence of structure of iron nanoparticles in aggregates on their magnetic properties. Nanoscale. Res. Lett. 6: 527.

Santos, F.S.D., Lago, F.R., Yokoyama, L. & Fonseca, F.V. 2017. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol. 6(2): 178-183.

Sun, Y.P., Li, X.Q., Cao, J., Zhang, W.X. & Wang, H.P. 2006. Characterization of zero-valent iron nanoparticles. Adv. Colloid. Interfac. 120: 47-56.

Torrey, J.D., Killgore, J.P., Bedford, N.M. & Greenlee, L.F. 2015. Oxidation behavior of zero-valent iron nanoparticles in mixed matrix water purification membranes. Environ. Sci-Wat. Res. 1: 146-152.

Wu, Y., Zhou, S., Qin, F., Zheng, K. & Ye, X. 2010. Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid. J. Hazard. Mater. 179: 533-539.

Yuvakkumar, R., Elango, V., Rajendran, V. & Kannan, N. 2011. Preparation and characterization of zero valent Iron nanoparticles. Dig. J. Nanomater. Bios. 6(4): 1771-1776.

Zhang, Y., Su, Y., Zhou, X., Dai, C. & Keller, A.A. 2013. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration. J. Hazard. Mater. 263: 685-693.

 

*Corresponding author; email: mohdshaiful@ukm.edu.my

 

 

 

 

previous