Sains Malaysiana 48(2)(2019): 393–399
http://dx.doi.org/10.17576/jsm-2019-4802-17
Insight Observation into Rapid Discoloration of
Batik Textile Effluent by in situ Formations of Zero Valent Iron
(Pemerhatian Celik Akal pada Penyahwarnaan Pesat
Efluen Tekstil Batik dengan Pembentukan in situ Ferum Bervalensi Sifar)
MOHD SHAIFUL
SAJAB1,2*,
NUR
NADIA
NAZIRAH
ISMAIL1,2,
JUDE
SANTANARAJ1,2,
ABDUL
WAHAB
MOHAMMAD1,2,
HASSIMI
ABU
HASSAN1,2,
CHIN
HUA
CHIA3,
SARANI
ZAKARIA3
& AN'AMT MOHAMED
NOOR4
1Research Center for Sustainable Process Technology (CESPRO),
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Chemical Engineering Programme, Faculty of Engineering and
Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
3School of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Fakulti Agro Industri dan Sumber Asli, Universiti Malaysia
Kelantan, Karung Berkunci 36, Pengkalan Chepa, 16100 Kota Bharu, Kelantan Darul
Naim, Malaysia
Received: 9 July 2018/Accepted: 1 October
2018
ABSTRACT
This study aimed to investigate the
discoloration of textile effluent from batik industrial wastewater by Fenton
oxidation process using Fe(II), Fe(III) and in situ formation of zero
valent iron (Fe(0)). The controlled parameters indicate the Fenton oxidation
reaction is ideal on effluent at pH5, concentration colour of 4005 mg/L Pt-Co
units using 0.5 mg/mL of catalyst dosage to meet the regulation for Malaysian
quality water standard. The optimization of Fe(0) precursors, Fe(II) shows a
higher discoloration efficiency in comparison with Fe(III). The synthesized
particles of Fe(0) shows a nano spherical structure in the diameter range of
20-70 nm, aggregated and into a chain-like formation. Subsequently, the
performance of Fe(0) was improved up to 97% discoloration in comparison with
89% discoloration by Fe(II). Whereas, the in situ formation of Fe(0) in
batik effluent shows a complete discoloration ascribable to higher reactivity
than partially oxidized of synthesized ex situ Fe(0). On top of that, in
situ Fe(0) performed at the expeditious reaction in less than five min.
Additionally, the regeneration of Fe(0), Fe(II) and Fe(III) show a potential of
catalyst recyclability up to three cycles of Fenton oxidation but with a
tolerable reduction to 62.1% of effluent discoloration.
Keywords: Colour removal; Fe(0);
Fenton oxidation; in situ nanoparticles; textile effluent; water remediation
ABSTRAK
Kajian ini bermatlamat untuk
mengkaji penyahwarnaan efluen tekstil daripada air sisa industri batik melalui
proses pengoksidaan Fenton menggunakan Fe(II), Fe(III) dan pembentukan in situ ferum
bervalensi sifar (Fe(0)). Parameter terkawal menunjukkan tindak balas
pengoksidaan Fenton adalah sesuai ke atas efluen pada pH5, warna berkepekatan
4005 mg/L Pt-Co unit dengan menggunakan 0.5 mg/mL dos pemangkin bagi memenuhi
pengawalan piawaian kualiti air Malaysia. Pengoptimuman bagi pelopor Fe(0),
menunjukkan Fe(II) memberikan penyahwarnaan yang lebih cekap berbanding
Fe(III). Zarah Fe(0) yang tersintesis menunjukkan struktur nano bersfera
berdiameter dalam julat 20-70 nm, terkumpul dan membentuk struktur seperti
berantai. Kemudian, prestasi Fe(0) telah meningkat sehingga 70% penyahwarnaan
berbanding 89% penyahwarnaan menggunakan Fe(II). Sementara itu, pembentukan in
situ Fe(0) di dalam efluen batik menunjukkan penyahwarnaan lengkap
disebabkan tindak balas yang lebih tinggi berbanding ex situ Fe(0)
tersintesis separa teroksida. Malah, in situ Fe(0) terhasil pada tindak
balas yang pantas dalam masa kurang lima minit. Tambahan lagi, penjanaan semula
Fe(0), Fe(II) dan Fe(III) menunjukkan potensi pengitaran semula pemangkin
sehingga tiga pusingan pengoksidaan Fenton dengan penurunan yang boleh diterima
kepada 62.1% penyahwarnaan.
Kata
kunci: Efluen tekstil; nanopartikel in situ; pengoksidaan Fenton; penyingkiran warna pemulihan air
REFERENCES
Abou-elela,
S.I., Ali, M.E.M. & Ibrahim, H.S. 2016. Combined treatment of retting flax
wastewater using Fenton oxidation and granular activated carbon. Arab. J.
Chem. 9: 511-517.
Ahmad, A.L.,
Harris, W.A., Syafiee & Seng, O.B. 2002. Removal of dye from wastewater of
textile industry using membrane technology. J. Teknol. 36: 31-44.
Birgani,
P.M., Ranjbar, N., Abdullah, R.C., Wong, K.T., Lee, G., Ibrahim, S., Park, C.,
Yoon, Y. & Jang, M. 2016. An efficient and economical treatment for batik
textile wastewater containing high levels of silicate and organic pollutants
using a sequential process of acidification, magnesium oxide, and palm
shellbased activated carbon application. J. Environ. Manage. 184(2):
229-239.
Bolobajev,
J., Kattel, E., Viisimaa, M., Goi, A., Trapido, M., Tenno, T. & Dulova, N.
2014. Reuse of ferric sludge as an iron source for the Fenton-based process in
wastewater treatment. Chem. Eng. J. 255: 8-13.
Chatterjee, S., Lim, S.R. &
Woo, S.H. 2010. Removal of reactive black 5 by zero-valent iron modified with
various surfactants. Chem. Eng. J. 160(1): 27-32.
Department of Environment (DOE), Malaysia.
2011. Environmental Quality. Sewage and Industrial Effluent.
Regulation 1979. Third Schedule Environmental Quality Act.
1974.
Duarte, F., Morais, V., Maldonado-Hódar,
F.J. & Madeira, L.M. 2013. Treatment of textile effluents by the
heterogeneous Fenton process in a continuous packed-bed reactor using
Fe/activated carbon as catalyst. Chem. Eng. J. 232: 34-41.
Ertugay, N. & Acar, F.N. 2017. Removal
of COD and color from Direct Blue 71 azo dye wastewater by Fenton's
oxidation: Kinetic study. Arab. J. Chem. 10: S1158-S1163.
Feitz, J.A., Joo, S.H., Huan, J., Sun,
Q., Sedlak, D.L. & Waite, T.D., 2005. Oxidative transformation of contaminants
using colloidal zero-valent iron. Colloid. Surface. A. 265: 88-94.
Jung, Y.S., Lim, W.T., Park, J.Y. &
Kim, Y.H. 2009. Effect of pH on Fenton and Fenton-like oxidation. Environ.
Technol. 30(2): 183-190.
Khalik, W.F., Ho, L.N., Ong, S.A., Wong, Y.S.,
Yusoff, N.A. & Ridwan, F. 2015. Decolorization and mineralization of batik
wastewater through solar photocatalytic process. Sains Malaysiana 44(4):
607-612.
Kusic, H., Koprivanac, N., Horvat, S.,
Bakija, S. & Bozic, A.L. 2009. Modeling dye degradation kinetic using dark-
and photo-Fenton type processes. Chem. Eng. J. 155: 144-154.
Kusic, H., Koprivanac, N. & Srsan, L.
2006. Azo dye degradation using Fenton type processes assisted by UV
irradiation: A kinetic study. J. Photoc. Photobio. A. 181: 195-202.
Lin, S.H. & Chen, M.L. 1997.
Purification of textile wastewater effluents by a combined Fenton process and
ion exchange. Desalination 109: 121-130.
Mesquita, I., Matos, L.C., Duarte, F.,
Maldonado-Hodar, F.J., Mendes, A. & Madeira, L.M. 2012. Treatment of azo
dye-containing wastewater by a Fenton-like process in a continuous packed-bed
reactor filled with activated carbon. J. Hazard. Mater. 237-238: 30-37.
Nawaz, M.S. & Ahsan, M. 2014.
Comparison of physico-chemical, advanced oxidation and biological techniques
for the textile wastewater treatment. Alexandria. Eng. J. 53: 717-722.
Ong, S.A., Ho, L.N., Wong, Y.S. &
Pakri, K.A.M. 2017. Comparative study on the biodegradation of mixed remazol
dyes wastewater between integrated anaerobic/aerobic and aerobic sequencing
batch reactors. Rend. Lincei. 28(3): 497-501.
Pereira, L. & Alves, M. 2012. Dyes -
environmental impact and remediation. In Environmental Protection Strategies
for Sustainable Development, edited by Malik, A. & Grohmann, E.
Springer: Dordrecht. pp. 111-162.
Pereira, W.S. & Freire, R.S. 2006.
Azo dye degradation by recycled waste zero-valent iron powder. J. Braz.
Chem. Soc. 17(5): 832-838.
Phenrat, T., Saleh, N., Sirk, K., Tilton,
R.D. & Lowry, G.V. 2007. Aggregation and sedimentation of aqueous nanoscale
zerovalent iron dispersions. Environ. Sci. Technol. 41(1): 284-290.
Ramlee, N.A., Mohd Rodhi, M.N., Anak
Brandah, A.D., Anuar, A., Alias, N.H. & Tengku Mohd, T.A. 2014. Potential
of integrated membrane bioreactor in batik dye degradation - A review. App.
Mech. Mater. 575: 50-54.
Rosická, D. & Sembera, J. 2011.
Influence of structure of iron nanoparticles in aggregates on their magnetic
properties. Nanoscale. Res. Lett. 6: 527.
Santos, F.S.D., Lago, F.R., Yokoyama, L.
& Fonseca, F.V. 2017. Synthesis and characterization of zero-valent iron
nanoparticles supported on SBA-15. J. Mater. Res. Technol. 6(2):
178-183.
Sun, Y.P., Li, X.Q., Cao, J., Zhang, W.X.
& Wang, H.P. 2006. Characterization of zero-valent iron nanoparticles. Adv.
Colloid. Interfac. 120: 47-56.
Torrey, J.D., Killgore, J.P., Bedford,
N.M. & Greenlee, L.F. 2015. Oxidation behavior of zero-valent iron
nanoparticles in mixed matrix water purification membranes. Environ.
Sci-Wat. Res. 1: 146-152.
Wu, Y., Zhou, S., Qin, F., Zheng, K.
& Ye, X. 2010. Modeling the oxidation kinetics of Fenton’s process on the
degradation of humic acid. J. Hazard. Mater. 179: 533-539.
Yuvakkumar, R., Elango, V., Rajendran, V.
& Kannan, N. 2011. Preparation and characterization of zero valent Iron
nanoparticles. Dig. J. Nanomater. Bios. 6(4): 1771-1776.
Zhang, Y., Su, Y., Zhou, X., Dai, C.
& Keller, A.A. 2013. A new insight on the core-shell structure of
zerovalent iron nanoparticles and its application for Pb(II) sequestration. J.
Hazard. Mater. 263: 685-693.
*Corresponding author; email:
mohdshaiful@ukm.edu.my
|