Sains Malaysiana 48(2)(2019): 401–406
http://dx.doi.org/10.17576/jsm-2019-4802-18
Kesan Pemendapan Elektroforesis Gam Arab
terhadap Halaju Kakisan pada Aluminium 5052
(Electrophoresis Deposition Arabic Gum Effect on
Aluminium 5052 Reduce Corrosion)
I
GUSTI AYU ARWATI1,3, EDY HERIANTO MAJLAN1*, WAN RAMLI WAN DAUD1,2, LOH KEE SHYUAN1, KHUZAIMAH
BINTI ARIFIN1, TEUKU HUSAINI1, SAGIR ALVA3 & NABILAH AFIQAH MOHD RADZUAN1
1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan Teknologi Proses Mampan, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Mechanical Engineering Department, Engineering Faculty, Mercu
Buana University, 11650 Jakarta, Indonesia
Received: 9 July 2018/Accepted: 29
September 2018
ABSTRAK
Plat dwikutub adalah salah satu
komponen utama sel fuel membran pertukaran proton (PEMFC).
Aloi aluminium (Al5052) merupakan salah satu logam yang digunakan sebagai plat
dwikutub kerana mempunyai kekonduksian yang tinggi dan ringan. Namun, sistem PEMFC yang berasid (pH3-6) adalah mudah untuk bahan Al5052 mengalami
kakisan sehingga dapat mengurangkan prestasi PEMFC.
Oleh itu, bagi mengurangkan halaju kakisan yang berlaku, kajian ini menggunakan
perencat hijau gam Arab dengan kaedah pemendapan elektroforesis (EPD).
Kesan kakisan plat Al5052 bersalut 0.5 gL-1 gam Arab di dalam larutan
sulfurik asid diuji menggunakan kaedah elektrokimia dan ujian morfologi. Hasil
ujian morfologi permukaan Al5052 yang bersalut gam Arab terlihat lebih halus
dan homogen berbanding permukaan yang tidak disalut serta hasil keratan rentas
ketebalan salutan adalah antara 7.5 μm sehingga 8.8 μm. Kesan
peningkatan suhu (30ºC sehingga 90ºC) terhadap nilai rintangan hubungan
antara muka (ICR) pada Al5052 yang tidak bersalut akan menurun
daripada 11.8552 sehinggs 9.9042 mΩ cm2 manakala yang bersalutkan gam
Arab mempunyai nilai daripada 13.3497sehingga 11.812 mΩ cm2.
Keputusan menunjukkan bahawa gam Arab dapat memberikan perlindungan terhadap
permukaan logam yang apabila pengujian menggunakan kaedah polarisasi linear
tafel dalam larutan 0.5 M H2SO4 (pH4)
menunjukkan nilai ketumpatan arus kakisan (Icorr)
semakin menurun daripada 0.00264 kepada 0.00012 μA cm-2.
Selain itu, halaju kakisan turut menurun daripada 3.06 × 10-5 mpy
kepada 1.61 × 10-6 mpy setelah disalut gam
Arab. Kesimpulannya, gam Arab dan kaedah salutan EPD boleh
digunakan bagi mengurangkan halaju kakisan pada plat Al5052, supaya jangka
hayat bahan ini lebih panjang dan boleh mencapai piawai yang ditetapkan oleh DOE untuk
plat dwikutub.
Kata kunci: Aluminium 5052;
ketumpatan arus kakisan; pemendapan elektroforesis; perencat hijau gam arab;
plat dwikutub; rintangan hubungan antara muka
ABSTRACT
Bipolar plates are one of the main
components of proton exchange membrane fuel cells (PEMFC).
Aluminum alloy (Al5052) is one of the metals used as a bipolar plate because it
has a high conductivity, light weight. However, the acidic PEMFC system
(pH3-6) is easy for Al5052 ingredients to experience corrosion so as to reduce PEMFC achievement. Therefore, in order to reduce the prevailing
sidewalks, this study used a green Arabic gum inhibitor with an electrophoresis
deposition (EPD). The impression of a 0.5 gL-1 Arabic
gum-coated Al5052 plate sidewalk in the sulphuric acid solution was tested
using an electrochemical method and a morphological test. The surface
morphology of Al5052 coated with Arabic gum appeared to be smoother and
homogeneous compared to uncoated surface and the cross section of the coating
thickness was between 7.5 μm and 8.8 μm. Effect of temperature
increase (30ºC - 90ºC) on the interfacial contact resistance (ICR)
value of the uncoated Al5052 will decrease from 11.8552 to 9.9042 mΩ cm2 where
the Arabic gum coated has a value of 13,3497 to 11,812 mΩ cm2.
The results showed that Arabic gum can provide protection against metal
surfaces where the test using linear tafel polarization technique in 0.5 M H2SO4 (pH4)
solution with corrosion current value (Icorr) decreased from 0.00264 to
0.00012 μA cm-2. Despite that, the corrosion rate
reduced from 3.06 × 10-5 mpy to 1.61 × 10-6 mpy
as being coted with Arabic gum. It can be concluded that Arabic gum and coating
techniques with EPD can be used to reduce corrosion on the Al5052 plate,
therefore, the life span of this material is longer and may reach the targets
set by the DOE for bipolar plates.
Keywords:
Aluminium 5052; bipolar plates; corrosion current density; electrophoresis
deposition; green inhibitor arabic gum; interfacial contact resistance
REFERENCES
Antonelli, E., Silva,
R.S., Bernardi, M.I.B. & Hernandes, A.C. 2013. Electrophoretic deposition
of BaTi0.85Zr0.15O3 nano powders. Materials Research 16(6): 1344-1349.
Antunes, R.A., de
Oliveira, M.C.L., Ett, G. & Ett, V. 2011. Carbon materials in composite
bipolar plates for polymer electrolyte membrane fuel cells: A review of the
main challenges to improve electrical performance. Journal of Power Sources 196(6):
2945-2961.
Antunes, R.A., Oliveira,
M.C.L., Ett, G. & Ett, V. 2010. Corrosion of metal bipolar plates for PEM
fuel cells: A review. International Journal of Hydrogen Energy 35(8):
3632-3647.
Ameh, P.O. 2014.
Inhibitory action of Albizia zygia gum on mild steel corrosion in acid
medium. African Journal of Pure and Applied Chemistry 8(2): 37-46.
Ameh, P.O., Magaji, L.
& Salihu, T. 2012. Corrosion inhibition and adsorption behaviour for mild
steel by Ficus glumosa gum in H2SO4 solution. African Journal of Pure and Applied Chemistry 6(7): 100-106.
Asri, N.F., Husaini, T.,
Abdullah, A.R., Sulong, A.B., Ramli, W.D.W. & Majlan, E.H. 2017.
Interfacial contact resistance for Ti-6Al-4V and SUS 316L plates as bipolar
plates in PEMFC. Journal of Mechanical Engineering, Electrical
Engineering 24(4): 1436-1442.
Asri, N.F., Husaini, T.,
Sulong, A.B., Majlan, E.H. & Daud, W.R.W. 2016. Coating of stainless steel
and titanium bipolar plates for anticorrosion in PEMFC: A review. International
Journal of Hydrogen Energy 42(14): 1-14.
Babu, R.S., de-Barros,
A.L.F., de-Almeida, M.M., da-Motta, S.D., Balamurugan, J. & Lee, J.H. 2018.
Novel polyaniline/ manganese hexacyanoferrate nanoparticles on carbon fiber as
binder-free electrode for flexible supercapacitors. Composites Part B:
Engineering. 143: 141-147.
Besra, L. & Liu, M.
2006. A review on fundamentals and applications of electrophoretic deposition
(EPD). Prog. Mater. Sci. 52(1): 1-61.
Bhakat, D., Barik, P.
& Bhattacharjee, A. 2018. Electrical conductivity behavior of gum Arabic
biopolymer-Fe3O4 nanocomposites. Journal of Physics and Chemistry of Solids 112:
73-79.
Chiang, T.Y., Ay-Su, Tsai,
L.C., Sheu, H.H. & Lu, C.E. 2014. Corrosion resistance of 5052 Al-alloy
with a Zirconia-rich conversion coating used in bipolar plates in PEMFCs. International
Journal of Electrochemical Science 9(11): 5850-5863.
Dadfar, M., Salehi, M.,
Golozar, M.A. & Trasatti, S. 2016. Surface modification of 304 stainless
steels to improve corrosion behavior and interfacial contact resistance of
bipolar plates. International Journal of Hydrogen Energy 41(46): 21375-
21384.
De Oliveira, M.C.L.,
Ett, G. & Antunes, R.A. 2012. Materials selection for bipolar plates for
polymer electrolyte membrane fuel cells using the Ashby approach. Journal of
Power Sources 206: 3-13.
Feng, K., Li, Z., Sun,
H., Yu, L., Cai, X., Wu, Y. & Chu, P.K. 2013. Short communication C/CrN
multilayer coating for polymer electrolyte membrane fuel cell metallic bipolar
plates. Journal of Power Sources 222: 351-358.
García, M.A.L. &
Smit, M.A. 2006. Study of electrodeposited polypyrrole coatings for the
corrosion protection of stainless steel bipolar plates for the PEM fuel cell. Journal
of Power Sources 158(1): 397-402.
Hermann, A., Chaudhuri,
T. & Spagnol, P. 2005. Bipolar plates for PEM fuel cells: A review. International
Journal of Hydrogen Energy 30(12): 1297-1302.
Hou, K.H. 2011. Analysis
on the corrosion behavior of Al-alloy bipolar plate and pH value of water
product for the PEMFC. International Conference on Environment Science and
Engineering 8: 313-317.
Huang, N.B., Yu, H., Xu,
L.S., Zhan, S., Sun, M. & Kirk, D.W. 2016. Corrosion kinetics of 316L
stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC
cathodic environment. Results in Physics 6: 730-736.
Mehta, V. & Cooper,
J. 2003. Review and analysis of PEM fuel cell design and manufacturing. Journal
of Power Sources 114(1): 32-53.
Radzuan, N.A.M.,
Zakaria, M.Y., Sulong, A.B. & Sahari, J. 2017. The effect of milled carbon
fibre filler on electrical conductivity in highly conductive polymer
composites. Composites Part B: Engineering 110: 153-160.
Mokhtar, L. 2016.
Electric conductivity of gum arabic from Acacia senegal. International
Journal of Science and Research 5(2): 583-593.
Othman, A., Abu-Dalo, M.A. &
Al-Rawashdeh. 2012. Exudate gum from acacia trees as green corrosion inhibitor
for mild steel in acidic media. International Journal of Electrochemical
Science 7: 9303-9324.
Patni, N., Agarwal, S. & Shah, P.
2013. Greener approach towards corrosion inhibition. Chinese Journal of
Engineering 2013: 1-10.
Pech-Rodríguez, W.J., González-Quijano,
D., Vargas-Gutiérrez, G. & Rodríguez-Varela, F.J. 2014. Electrophoretic
deposition of polypyrrole/Vulcan XC-72 corrosion protection coatings on SS-304
bipolar plates by asymmetric alternating current for PEM fuel cells. International
Journal of Hydrogen Energy 39(29): 16740-16749.
Peter, A. & Sanjay, I.B.O. 2015. Use
of natural gums as green corrosion inhibitors: An overview. International
Journal of Industrial Chemistry 6(3): 153-164.
Raddaha, N.S., Cordero-Arias, L.,
Cabanas-Polo, S., Virtanen, S., Roether, J.A. & Boccaccini, A.R. 2014.
Electrophoretic deposition of chitosan/h-BN and chitosan/h-BN/TiO2 composite
coatings on stainless steel (316L) substrates. Materials 7(3):
1814-1829.
Rani, B.E.A. & Basu, B.B.J. 2012.
Green inhibitors for corrosion protection of metals and alloys: An overview. International
Journal of Corrosion 2012: Article ID 380217.
Sangeetha, M., Rajendran, S.,
Muthumegala, T.S. & Krishnaveni. 2011. Green corrosion inhibitors - an
overview. Zastita Materijala 52: 3.
Shahram, K., Norman, F., Bronwyn, R.
& Frank, R. 2012. A review of metallic bipolar plates for proton exchange
membrane fuel cell: Materials an fabrication methods. J.
Advances in Materials Science 2012: Article ID 828070.
Tawfik, H., Hung, Y. & Mahajan, D.
2007. Metal bipolar plates for PEM fuel cell - A review. Journal of Power
Sources 163(2): 755-767.
Umoren, S.A., Obot, I.B. & Ebenso,
E.E. 2008a. Corrosion inhibition of aluminium using exudate gum from Pachylobus
edulis in the presence of halide ions in HCl. E-Journal of Chemistry 5(2):
355-364.
Umoren, S.A., Obot, I.B., Ebenso, E.E.
& Okafor, P.C. 2008b. Eco-friendly inhibitors from naturally occurring
exudate gums for aluminium corrosion inhibition in acidic medium. Portugaliae
Electrochimica Acta 26(3): 267-282.
Wang, X.Z., Muneshwar, T.P., Fan, H.Q.,
Cadien, K. & Luo, J.L. 2018. Achieving ultrahigh corrosion resistance and
conductive zirconium oxynitride coating on metal bipolar plates by plasma
enhanced atomic layer deposition. Journal of Power Sources 397: 32-36.
Woodman, A.S., Anderson, E.B., Jayne,
K.D., Kimble, M.C. & Kimble, M.C. 1999. Development of corrosion-resistant
coatings for fuel cell bipolar plates. Physical Sciences 978: 1-9.
Yang, Y., Guo, L. & Liu, H. 2010.
Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode
environments with different acidities. International Journal of Hydrogen
Energy 36(2): 1654-1663.
*Corresponding author; email:
edyhm71@gmail.com
|