Sains Malaysiana 48(3)(2019):
685–695
http://dx.doi.org/10.17576/jsm-2019-4803-23
Constrained Interpolation using Rational
Cubic Spline with Three Parameters
(Interpolasi Berkekangan menggunakan Splin Kubus dengan
Tiga Parameter)
SAMSUL ARIFFIN
ABDUL
KARIM1,
MOHAMMAD
KHATIM
HASAN2
& ISHAK HASHIM3*
1Fundamental and Applied
Sciences Department and Centre for Smart Grid Energy Research (CSMER),
Institute of Autonomous System, Universiti
Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar,
Perak Darul Ridzuan,
Malaysia
2Pusat Penyelidikan Teknologi Kecerdasan Buatan, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
3School of Mathematical
Sciences, Faculty of Science & Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received:
27 March 2018/Accepted: 5 December 2018
ABSTRACT
The C1 rational cubic
spline function (cubic/quadratic) with three parameters is used
to construct a constrained interpolating curve that lies below or
above an arbitrary straight line or between two straight lines.
The data dependent sufficient conditions for the rational cubic
interpolant bounded by two straight lines are derived on one parameter,
while the other two are free parameters that will be useful for
shape modification. Some numerical results will be presented by
using Mathematica software. Comparison with some existing schemes
shows that the proposed scheme outperforms the existing schemes.
Keywords: Constrained interpolation;
continuity; rational cubic spline
ABSTRAK
Fungsi splin kubus nisbah
C1 dengan tiga
parameter digunakan untuk
membentuk satu lengkung berkekangan yang berada di bawah atau atas suatu
garis lurus
atau di antara dua garisan lurus.
Syarat cukup
bagi lengkung kubus
nisbah terbatas
di antara dua garisan
lurus yang bergantung
kepada data dihasilkan pada satu parameter dengan dua yang lain adalah parameter bebas yang berguna untuk perubahan
bentuk. Beberapa
hasil berangka akan ditunjuk dengan
menggunakan perisian
Mathematica. Perbandingan dengan
beberapa skema
sedia ada menunjukkan
bahawa skema
yang dicadangkan mengatasi skema sedia ada.
Kata kunci: Interpolasi
berkekangan; keselanjaran;
splin kubus nisbah
REFERENCES
Abbas, M., Majid,
A.A., Awang, M.N.H. & Ali, J.M. 2012.
Constrained shape preserving rational bi-cubic spline interpolation.
World Applied Sciences Journal 20: 790-800.
Bashir, U. &
Ali, J.M. 2013. Data visualization using rational trigonometric
spline. Journal of Applied Mathematics 2013: 531497.
Bastian-Walther,
M. & Schmidt, J.W. 1999. Range restricted interpolation using
Gregory’s rational cubic splines. Journal of Computational and
Applied Mathematics 103: 221-237.
Delbourgo, R. & Gregory,
J.A. 1985. The determination of derivative parameters for a monotonic
rational quadratic interpolant. IMA Journal of Numerical Analysis
5: 397-406.
Duan, Q., Wang, L. &
Twizell, E.H. 2005. A new C2
rational interpolation based on function values and constrained
control of the interpolant curves. Applied Mathematics and Computation
161: 311-322.
Goodman, T.N.T.,
Ong, B.H. & Unsworth, K. 1991. Constrained
interpolation using rational cubic splines. In NURBS for Curve
and Surface Design (Geometric Design Publications), edited by
Farin, G. Philadelphia: Society for Industrial
& Applied. pp. 59-74.
Hussain, M.Z. &
Hussain, M. 2006. Visualization of data subject to positive constraint.
Journal of Information and Computing Sciences 1: 149-160.
Ibraheem, F., Hussain, M.,
Hussain, M.Z. & Bhatti, A.A. 2012. Positive data visualization
using trigonometric polynomials. Journal of Applied Mathematics
2012: 247120.
Karim, S.A.A. &
Kong, V.P. 2014. Shape preserving interpolation using rational cubic
spline. Research Journal of Applied Sciences, Engineering and
Technology 8: 167-168.
Meek, D.S., Ong,
B.H. & Walton, D.J. 2003. Constrained interpolation with rational
cubics. Computer Aided Geometric Design 20: 253-275.
Sarfraz, M., Hussain, M.Z.
& Hussain, F. 2015. Shape preserving curves using quadratic
trigonometric splines. Applied Mathematics and Computation 265:
1126-1144.
Sarfraz, M., Hussain, M.Z.
& Hussain, M. 2013a. Modeling rational spline for visualization
of shaped data. Journal of Numerical Mathematics 21: 63-87.
Sarfraz, M., Irshad,
M. & Hussain, M.Z. 2013b. Reverse engineering of planar objects
using GAs. Sains Malaysiana 42(8):
1167-1179.
Shaikh, T.S., Sarfraz,
M. & Hussain, M.Z. 2011. Shape preserving constrained data visualization
using rational functions. Journal of Prime Research in Mathematics
7: 35-51.
*Corresponding author;
email: ishak_h@ukm.edu.my
|