Sains Malaysiana 48(4)(2019): 861–869
http://dx.doi.org/10.17576/jsm-2019-4804-18
Kelakuan Pengoksidaan Keluli Tahan Karat
Berferit SUS430 dan Kesan Pemeruapan Spesies Cr Bergas
kepada Permukaan Katod LSCF dalam Suhu Operasi Sel Fuel
Oksida Pepejal
(Oxidation Behaviour of SUS430 Ferritic Stainless
Steel and Effects of Gaseous Cr Species Volatilization on LSCF
Cathode Surface in Solid Oxide Fuel Cell Operating Temperature)
ISYRAF AZNAM1, JOELLE MAH CHIA WEN1, ANDANASTUTI MUCHTAR1,2*, NURUL AKIDAH BAHARUDDIN1, MAHENDRA RAO SOMALU1 & MARIYAM JAMEELAH GHAZALI2
1Institut Sel Fuel,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Kejuruteraan Bahan
dan Pembuatan Pintar, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
7 November 2018/Accepted: 14 February 2019
ABSTRAK
Pengoksidaan antarahubung berasaskan
bahan keluli tahan karat SUS430 dalam sel fuel oksida pepejal (SFOP)
bersuhu sederhana menyumbang kepada pembentukan lapisan oksida yang mengandungi
spesies kromium (Cr) meruap (volatile Cr species) di
sekeliling komponen tersebut. Bagi tempoh operasi yang panjang, pemeruapan
spesies Cr ini menyebabkan keracunan kromium pada komponen katod yang
bersentuhan dengan permukaan antarahubung SUS430.
Sehingga kini, katod La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)
merupakan calon terbaik bagi katod SFOP bersuhu sederhana.
Justeru, kajian ini bertujuan untuk mengenal pasti kesan jangka panjang
pengoksidaan keluli SUS430 terhadap pembentukan spesies Cr
meruap dan menentukan pengaruh pemeruapan Cr ke atas prestasi komponen katod LSCF.
Hasil kajian menunjukkan bahawa pengoksidaan keluli SUS430
selama 200 jam membawa kepada pertambahan berat secara parabolik yang berkait
dengan mekanisme pertumbuhan sisik oksida. Sisik ini terdapat dua lapisan iaitu
spinel di bahagian atas diikuti lapisan kromia dan dilihat tidak memberi kesan
signifikan pada kekonduksian SUS430. Walau bagaimanapun,
pengendapan Cr pada permukaan katod LSCF menyebabkan pertumbuhan
hablur SrCrO4 dan
Cr2O3. Pembentukan tersebut
bukan sahaja mengurangkan aktiviti pemangkinan seperti penurunan oksigen dan
meningkatkan rintangan elektrik, malah meningkatkan tenaga pengaktifan akibat
peningkatan kepekatan kekosongan oksigen. Justeru, penghadangan pemeruapan Cr
terbukti amat penting untuk mengekalkan kestabilan jangka panjang SFOP bersuhu sederhana.
Kata kunci: Antarahubung; Fe-Cr;
mendakan; peracunan Cr; sisik oksida
ABSTRACT
Oxidation of ferritic stainless
steel SUS430-based interconnects in intermediate temperature
solid oxide fuel cell (IT-SOFC) contributes to the formation
of oxide scales containing volatile chromium (Cr) species around the component.
In a long-term operation, Cr volatilization causes Cr poisoning on the cathode
component, which is in contact with the SUS430 interconnect. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)
cathode is currently the best candidate for IT-SOFC cathode.
This study aims to determine the effects of the long-term oxidation of SUS430
steel on volatile Cr species formation and to investigate the influence of Cr
volatilization on the LSCF cathode performance. The results
show that the oxidation of SUS430 steel for 200 h parabolically
increased its weight due to oxide scale formation. The scale consists of two
layers, namely, the spinel on top and the chromia layer, which does not affect
the SUS430 conductivity. However, Cr deposition on the LSCF cathode surface causes the formation of SrCrO4 and
Cr2O3 crystallites.
This phenomenon reduces the catalytic activity and increases the electrical
resistance and the activation energy due to the high amount of oxygen
vacancies. Therefore, the mitigation of volatile Cr species is important in
maintaining the long-term stability of IT-SOFCs.
Keywords: Cr poisoning; Fe-Cr; interconnect; oxide scales;
precipitation
REFERENCES
Anwar, M., Muhammed, A.,
Abdalla, A., Somalu, R. & Muchtar, A. 2017. Effect of sintering temperature
on the microstructure and ionic conductivity of Ce0.8Sm0.1Ba0.1O2-δ electrolyte. Processing and Application of Ceramics 11(1): 67-74.
Ardigò, M.R., Perron,
A., Combemale, L., Heintz, O., Caboche, G. & Chevalier, S. 2011. Interface
reactivity study between La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode material and metallic
interconnect for fuel cell. Journal of Power Sources 196(4): 2037-2045.
Baharuddin, N.A.,
Muchtar, A. & Somalu, M.R. 2017. Short review on cobalt-free cathodes for
solid oxide fuel cells. International Journal of Hydrogen Energy 42(14):
9149- 9155.
Baharuddin, N.A.,
Rahman, H.A., Muchtar, A., Sulong, A.B. & Abdullah, H. 2014. Kesan masa
pengendapan dan saiz elektrod lawan dalam penghasilan katod komposit LSCF-SDC
karbonat untuk SOFC. Sains Malaysiana 43(4): 595- 601.
Bentzen, J.J., Høgh,
J.V.T., Barfod, R. & Hagen, A. 2009. Chromium poisoning of LSM/YSZ and
LSCF/CGO composite cathodes. Fuel Cells 9(6): 823-832.
Brylewski, T., Kucza,
W., Adamczyk, A., Kruk, A., Stygar, M., Bobruk, M. & Dąbrowa, J. 2014.
Microstructure and electrical properties of Mn1+xCo2−xO4 (0≤x≤1.5) spinels synthesized using EDTA-gel
processes. Ceramics International 40(9): 13873-13882.
Da Conceião, L., Silva,
A.M., Ribeiro, N.F.P. & Souza, M.M.V.M. 2011. Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3(LSCF) porous materials for application
as cathode in IT-SOFC. Materials Research Bulletin 46(2): 308-314.
Falk-Windisch, H.,
Svensson, J.E. & Froitzheim, J. 2015. The effect of temperature on chromium
vaporization and oxide scale growth on interconnect steels for solid oxide fuel
cells. Journal of Power Sources 287: 25-35.
Fergus, J.W. 2005.
Metallic interconnects for solid oxide fuel cells. Materials Science and
Engineering A 397(1-2): 271- 283.
Gan, L., Murakami, H.
& Saeki, I. 2018. High temperature oxidation of Co-W electroplated type 430
stainless steel for the interconnect of solid oxide fuel cells. Corrosion
Science 134: 162-168.
Hosseini, N., Abbasi, M.H.,
Karimzadeh, F. & Choi, G.M. 2014. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for
solid oxide fuel cell interconnects. Journal of Power Sources 273:
1073-1083.
Hosseini, N.,
Karimzadeh, F., Abbasi, M.H. & Choi, G.M. 2016. Correlation between
microstructure and electrical properties of Cu1.3Mn1.7O4/La2O3 composite-coated ferritic stainless steel interconnects. Journal of Alloys
and Compounds 673: 249-257.
Hua, B., Pu, J., Lu, F.,
Zhang, J., Chi, B. & Jian, L. 2010. Development of a Fe-Cr alloy for
interconnect application in intermediate temperature solid oxide fuel cells. Journal
of Power Sources 195(9): 2782-2788.
Irshad, M., Siraj, K.,
Raza, R., Ali, A., Tiwari, P., Zhu, B., Rafique, A.A.A., Muhammad
Kaleem, U. & Arslan, U. 2016. A brief description of high
temperature solid oxide fuel cell's operation, materials, design,
fabrication technologies and performance. Applied Sciences
6(3): 75.
Jiang, S.P. & Chen,
X. 2014. Chromium deposition and poisoning of cathodes of solid oxide fuel
cells - A review. International Journal of Hydrogen Energy 39(1):
505-531.
Jiang, S.P., Zhen, Y.D.,
Zhang, S., Tok, A.I.Y. & Wu, P. 2006. An electrochemical method to assess
the chromium volatility of chromia-forming metallic interconnect for SOFCs. Journal
of the Electrochemical Society 153(11): A2120.
Jiang, S.P., Zhang, S.
& Zhen, Y.D. 2005. Early interaction between Fe-Cr alloy metallic
interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells. Journal of Materials Research 20(3): 747-758.
Jiang, S.P., Zhang, J.P.
& Foger, K. 2000. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells II. Effect on O2 reduction reaction. Journal of The Electrochemical Society 147(9): 3195.
Jo, K.H., Kim, J.H., Kim,
K.M., Lee, I.S. & Kim, S.J. 2015. Development of a new cost effective Fe-Cr
ferritic stainless steel for SOFC interconnect. International Journal of
Hydrogen Energy 40(30): 9523-9529.
Linder, M., Hocker, T.,
Holzer, L., Friedrich, K.A., Iwanschitz, B., Mai, A. & Schuler, J.A. 2013.
Cr2O3 scale growth rates on metallic interconnectors
derived from 40,000 h solid oxide fuel cell stack operation. Journal of
Power Sources 243: 508-518.
Liu, M., Liu, M., Ding,
D., Blinn, K., Li, X. & Nie, L. 2012. Enhanced performance of LSCF cathode
through surface modification. International Journal of Hydrogen Energy 37(10):
8613-8620.
Mah, J.C.W., Muchtar,
A., Somalu, M.R., Ghazali, M.J. & Raharjo, J. 2017. Formation of sol-gel
derived (Cu,Mn,Co) 3 O 4 spinel and its electrical properties. Ceramics
International 43(10): 7641-7646.
Mahmud, L.S., Muchtar, A. & Somalu,
M.R. 2017. Challenges in fabricating planar solid oxide fuel cells: A review. Renewable
and Sustainable Energy Reviews 72: 105-116.
Muhammed Ali, S.A., Anwar, M., Ashikin,
N., Muchtar, A. & Somalu, M.R. 2018. Influence of oxygen ion enrichment on
optical, mechanical, and electrical properties of LSCF perovskite
nanocomposite. Ceramics International 44(9): 10433-10442.
Muhammed, M.A., Anwar, M., Raduwan, N.F.,
Muchtar, A. & Somalu, M.R. 2018. Optical, mechanical and electrical
properties of LSCF-SDC composite cathode prepared by sol-gel assisted rotary
evaporation technique. Journal of Sol-Gel Science and Technology 86(2):
1-12.
Oh, D., Armstrong, E., Jung, D., Kan, C.
& Wachsman, E. 2009. Mechanistic understanding of Cr poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). ECS Transactions 25(2): 2871-2879.
Qi, Q., Liu, Y. & Huang, Z. 2015.
Promising metal matrix composites (TiC/Ni-Cr) for intermediate-temperature
solid oxide fuel cell (SOFC) interconnect applications. Scripta Materialia 109:
56-60.
Raharjo, J., Muchtar, A., Daud, W.R.W.,
Muhamad, N. & Majlan, E.H. 2012. Physical and thermal characterisations of
SDC-(Li/Na) 2CO3 electrolyte ceramic composites. Sains Malaysiana 41(1): 95-102.
Rahman, H.A., Muchtar, A., Muhamad, N.
& Abdullah, H. 2010. Komposit La1-xSrxCo1-yFeyO3-δ (LSCF) sebagai bahan katod tahan lama bagi sel fuel oksida pejal bersuhu
sederhana-rendah: Ulasan kajian. Jurnal Kejuruteraan 22: 1-9.
Ranjbar-Nouri, Z., Soltanieh, M. &
Rastegari, S. 2018. Applying the protective CuMn2O4 spinel coating on AISI-430 ferritic stainless steel used as solid oxide fuel
cell interconnects. Surface and Coatings Technology 334: 365-372.
Sachitanand, R., Sattari, M., Svensson,
J.E. & Froitzheim, J. 2013. Evaluation of the oxidation and Cr evaporation
properties of selected FeCr alloys used as SOFC interconnects. International
Journal of Hydrogen Energy 38(35): 15328- 15334.
Sakai, N., Horita, T., Xiong, Y.P.,
Yamaji, K., Kishimoto, H., Brito, M.E., Yokokawa, H. & Maruyama, T. 2005.
Structure and transport property of manganese-chromium-iron oxide as a main
compound in oxide scales of alloy interconnects for SOFCs. Solid State
Ionics 176(7-8): 681-686.
Shaigan, N., Qu, W., Ivey, D.G. &
Chen, W. 2010. A review of recent progress in coatings, surface modifications
and alloy developments for solid oxide fuel cell ferritic stainless steel
interconnects. Journal of Power Sources 195(6): 1529-1542.
Sun, C., Hui, R. & Roller, J. 2010.
Cathode materials for solid oxide fuel cells: A review. Journal of Solid
State Electrochemistry 14(7): 1125-1144.
Tucker, M.C., Kurokawa, H., Jacobson,
C.P., De Jonghe, L.C. & Visco, S.J. 2006. A fundamental study of chromium
deposition on solid oxide fuel cell cathode materials. Journal of Power
Sources 160(1): 130-138.
Van Der Heide, P.A.W. 2002. Systematic
x-ray photoelectron spectroscopic study of La1-xSrx-based
perovskite-type oxides. Surface and Interface Analysis 33(5): 414-425.
Van Herle, J., McEvoy, A.J. & Thampi,
K.R. 1994. Conductivity measurements of various yttria-stabilized zirconia
samples. Journal of Materials Science 29(14): 3691-3701.
Wu, J. & Liu, X. 2010. Recent
development of SOFC metallic interconnect. Journal of Materials Science and
Technology 26(4): 293-305.
Xu, Q., Huang, D.P., Zhang, F., Chen, W.,
Chen, M. & Liu, H.X. 2008. Structure, electrical conducting and thermal
expansion properties of La0.6Sr0.4Co0.8Fe0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathodes. Journal of Alloys and Compounds 454(1-2): 460- 465.
Yang, J.J., Yan, D., Huang, W., Li, J.,
Pu, J., Chi, B. & Jian, L. 2018. Improvement on durability and thermal
cycle performance for solid oxide fuel cell stack with external manifold structure. Energy 149: 903-913.
Yokokawa, H., Horita, T., Sakai, N.,
Yamaji, K., Brito, M.E., Xiong, Y.P. & Kishimoto, H. 2006. Thermodynamic
considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177(35-36):
3193-3198.
You, P.F., Zhang, X., Zhang, H.L., Liu,
H.J. & Zeng, C.L. 2018. Effect of CeO2 on oxidation and
electrical behaviors of ferritic stainless steel interconnects with Ni Fe
coatings. International Journal of Hydrogen Energy 43(12): 7492-7500.
Zeng, Y., Wu, J., Baker, A.P. & Liu, X.
2014. Magnetron-sputtered Mn/Co(40:60) coating on ferritic stainless steel
SUS430 for solid oxide fuel cell interconnect applications. International
Journal of Hydrogen Energy 39(28): 16061-16066.
Zeng, P., Ran, R., Chen, Z., Gu, H.,
Shao, Z., da Costa, J.C.D. & Liu, S. 2007. Significant effects of sintering
temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen selective membranes. Journal of Membrane Science 302(1-2):
171-179.
Zhu, W.Z. & Deevi, S.C. 2003.
Opportunity of metallic interconnects for solid oxide fuel cells: A status on
contact resistance. Materials Research Bulletin 38(6): 957-972.
*Corresponding author; email:
muchtar@ukm.edu.my