Sains Malaysiana 48(4)(2019): 861–869

http://dx.doi.org/10.17576/jsm-2019-4804-18

 

Kelakuan Pengoksidaan Keluli Tahan Karat Berferit SUS430 dan Kesan Pemeruapan Spesies Cr Bergas kepada Permukaan Katod LSCF dalam Suhu Operasi Sel Fuel Oksida Pepejal

(Oxidation Behaviour of SUS430 Ferritic Stainless Steel and Effects of Gaseous Cr Species Volatilization on LSCF Cathode Surface in Solid Oxide Fuel Cell Operating Temperature)

 

ISYRAF AZNAM1, JOELLE MAH CHIA WEN1, ANDANASTUTI MUCHTAR1,2*, NURUL AKIDAH BAHARUDDIN1, MAHENDRA RAO SOMALU1 & MARIYAM JAMEELAH GHAZALI2

 

1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Kejuruteraan Bahan dan Pembuatan Pintar, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 7 November 2018/Accepted: 14 February 2019

 

ABSTRAK

Pengoksidaan antarahubung berasaskan bahan keluli tahan karat SUS430 dalam sel fuel oksida pepejal (SFOP) bersuhu sederhana menyumbang kepada pembentukan lapisan oksida yang mengandungi spesies kromium (Cr) meruap (volatile Cr species) di sekeliling komponen tersebut. Bagi tempoh operasi yang panjang, pemeruapan spesies Cr ini menyebabkan keracunan kromium pada komponen katod yang bersentuhan dengan permukaan antarahubung SUS430. Sehingga kini, katod La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) merupakan calon terbaik bagi katod SFOP bersuhu sederhana. Justeru, kajian ini bertujuan untuk mengenal pasti kesan jangka panjang pengoksidaan keluli SUS430 terhadap pembentukan spesies Cr meruap dan menentukan pengaruh pemeruapan Cr ke atas prestasi komponen katod LSCF. Hasil kajian menunjukkan bahawa pengoksidaan keluli SUS430 selama 200 jam membawa kepada pertambahan berat secara parabolik yang berkait dengan mekanisme pertumbuhan sisik oksida. Sisik ini terdapat dua lapisan iaitu spinel di bahagian atas diikuti lapisan kromia dan dilihat tidak memberi kesan signifikan pada kekonduksian SUS430. Walau bagaimanapun, pengendapan Cr pada permukaan katod LSCF menyebabkan pertumbuhan hablur SrCrO4 dan Cr2O3. Pembentukan tersebut bukan sahaja mengurangkan aktiviti pemangkinan seperti penurunan oksigen dan meningkatkan rintangan elektrik, malah meningkatkan tenaga pengaktifan akibat peningkatan kepekatan kekosongan oksigen. Justeru, penghadangan pemeruapan Cr terbukti amat penting untuk mengekalkan kestabilan jangka panjang SFOP bersuhu sederhana.

 

Kata kunci: Antarahubung; Fe-Cr; mendakan; peracunan Cr; sisik oksida

 

ABSTRACT

Oxidation of ferritic stainless steel SUS430-based interconnects in intermediate temperature solid oxide fuel cell (IT-SOFC) contributes to the formation of oxide scales containing volatile chromium (Cr) species around the component. In a long-term operation, Cr volatilization causes Cr poisoning on the cathode component, which is in contact with the SUS430 interconnect. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode is currently the best candidate for IT-SOFC cathode. This study aims to determine the effects of the long-term oxidation of SUS430 steel on volatile Cr species formation and to investigate the influence of Cr volatilization on the LSCF cathode performance. The results show that the oxidation of SUS430 steel for 200 h parabolically increased its weight due to oxide scale formation. The scale consists of two layers, namely, the spinel on top and the chromia layer, which does not affect the SUS430 conductivity. However, Cr deposition on the LSCF cathode surface causes the formation of SrCrO4 and Cr2O3 crystallites. This phenomenon reduces the catalytic activity and increases the electrical resistance and the activation energy due to the high amount of oxygen vacancies. Therefore, the mitigation of volatile Cr species is important in maintaining the long-term stability of IT-SOFCs.

 

Keywords: Cr poisoning; Fe-Cr; interconnect; oxide scales; precipitation

REFERENCES

Anwar, M., Muhammed, A., Abdalla, A., Somalu, R. & Muchtar, A. 2017. Effect of sintering temperature on the microstructure and ionic conductivity of Ce0.8Sm0.1Ba0.1O2-δ electrolyte. Processing and Application of Ceramics 11(1): 67-74.

Ardigò, M.R., Perron, A., Combemale, L., Heintz, O., Caboche, G. & Chevalier, S. 2011. Interface reactivity study between La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode material and metallic interconnect for fuel cell. Journal of Power Sources 196(4): 2037-2045.

Baharuddin, N.A., Muchtar, A. & Somalu, M.R. 2017. Short review on cobalt-free cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy 42(14): 9149- 9155.

Baharuddin, N.A., Rahman, H.A., Muchtar, A., Sulong, A.B. & Abdullah, H. 2014. Kesan masa pengendapan dan saiz elektrod lawan dalam penghasilan katod komposit LSCF-SDC karbonat untuk SOFC. Sains Malaysiana 43(4): 595- 601.

Bentzen, J.J., Høgh, J.V.T., Barfod, R. & Hagen, A. 2009. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes. Fuel Cells 9(6): 823-832.

Brylewski, T., Kucza, W., Adamczyk, A., Kruk, A., Stygar, M., Bobruk, M. & Dąbrowa, J. 2014. Microstructure and electrical properties of Mn1+xCo2−xO4 (0≤x≤1.5) spinels synthesized using EDTA-gel processes. Ceramics International 40(9): 13873-13882.

Da Conceião, L., Silva, A.M., Ribeiro, N.F.P. & Souza, M.M.V.M. 2011. Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3(LSCF) porous materials for application as cathode in IT-SOFC. Materials Research Bulletin 46(2): 308-314.

Falk-Windisch, H., Svensson, J.E. & Froitzheim, J. 2015. The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for solid oxide fuel cells. Journal of Power Sources 287: 25-35.

Fergus, J.W. 2005. Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A 397(1-2): 271- 283.

Gan, L., Murakami, H. & Saeki, I. 2018. High temperature oxidation of Co-W electroplated type 430 stainless steel for the interconnect of solid oxide fuel cells. Corrosion Science 134: 162-168.

Hosseini, N., Abbasi, M.H., Karimzadeh, F. & Choi, G.M. 2014. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. Journal of Power Sources 273: 1073-1083.

Hosseini, N., Karimzadeh, F., Abbasi, M.H. & Choi, G.M. 2016. Correlation between microstructure and electrical properties of Cu1.3Mn1.7O4/La2O3 composite-coated ferritic stainless steel interconnects. Journal of Alloys and Compounds 673: 249-257.

Hua, B., Pu, J., Lu, F., Zhang, J., Chi, B. & Jian, L. 2010. Development of a Fe-Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells. Journal of Power Sources 195(9): 2782-2788.

Irshad, M., Siraj, K., Raza, R., Ali, A., Tiwari, P., Zhu, B., Rafique, A.A.A., Muhammad Kaleem, U. & Arslan, U. 2016. A brief description of high temperature solid oxide fuel cell's operation, materials, design, fabrication technologies and performance. Applied Sciences 6(3): 75.

Jiang, S.P. & Chen, X. 2014. Chromium deposition and poisoning of cathodes of solid oxide fuel cells - A review. International Journal of Hydrogen Energy 39(1): 505-531.

Jiang, S.P., Zhen, Y.D., Zhang, S., Tok, A.I.Y. & Wu, P. 2006. An electrochemical method to assess the chromium volatility of chromia-forming metallic interconnect for SOFCs. Journal of the Electrochemical Society 153(11): A2120.

Jiang, S.P., Zhang, S. & Zhen, Y.D. 2005. Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells. Journal of Materials Research 20(3): 747-758.

Jiang, S.P., Zhang, J.P. & Foger, K. 2000. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells II. Effect on O2 reduction reaction. Journal of The Electrochemical Society 147(9): 3195.

Jo, K.H., Kim, J.H., Kim, K.M., Lee, I.S. & Kim, S.J. 2015. Development of a new cost effective Fe-Cr ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy 40(30): 9523-9529.

Linder, M., Hocker, T., Holzer, L., Friedrich, K.A., Iwanschitz, B., Mai, A. & Schuler, J.A. 2013. Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation. Journal of Power Sources 243: 508-518.

Liu, M., Liu, M., Ding, D., Blinn, K., Li, X. & Nie, L. 2012. Enhanced performance of LSCF cathode through surface modification. International Journal of Hydrogen Energy 37(10): 8613-8620.

Mah, J.C.W., Muchtar, A., Somalu, M.R., Ghazali, M.J. & Raharjo, J. 2017. Formation of sol-gel derived (Cu,Mn,Co) 3 O 4 spinel and its electrical properties. Ceramics International 43(10): 7641-7646.

Mahmud, L.S., Muchtar, A. & Somalu, M.R. 2017. Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews 72: 105-116.

Muhammed Ali, S.A., Anwar, M., Ashikin, N., Muchtar, A. & Somalu, M.R. 2018. Influence of oxygen ion enrichment on optical, mechanical, and electrical properties of LSCF perovskite nanocomposite. Ceramics International 44(9): 10433-10442.

Muhammed, M.A., Anwar, M., Raduwan, N.F., Muchtar, A. & Somalu, M.R. 2018. Optical, mechanical and electrical properties of LSCF-SDC composite cathode prepared by sol-gel assisted rotary evaporation technique. Journal of Sol-Gel Science and Technology 86(2): 1-12.

Oh, D., Armstrong, E., Jung, D., Kan, C. & Wachsman, E. 2009. Mechanistic understanding of Cr poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). ECS Transactions 25(2): 2871-2879.

Qi, Q., Liu, Y. & Huang, Z. 2015. Promising metal matrix composites (TiC/Ni-Cr) for intermediate-temperature solid oxide fuel cell (SOFC) interconnect applications. Scripta Materialia 109: 56-60.

Raharjo, J., Muchtar, A., Daud, W.R.W., Muhamad, N. & Majlan, E.H. 2012. Physical and thermal characterisations of SDC-(Li/Na) 2CO3 electrolyte ceramic composites. Sains Malaysiana 41(1): 95-102.

Rahman, H.A., Muchtar, A., Muhamad, N. & Abdullah, H. 2010. Komposit La1-xSrxCo1-yFeyO3-δ (LSCF) sebagai bahan katod tahan lama bagi sel fuel oksida pejal bersuhu sederhana-rendah: Ulasan kajian. Jurnal Kejuruteraan 22: 1-9.

Ranjbar-Nouri, Z., Soltanieh, M. & Rastegari, S. 2018. Applying the protective CuMn2O4 spinel coating on AISI-430 ferritic stainless steel used as solid oxide fuel cell interconnects. Surface and Coatings Technology 334: 365-372.

Sachitanand, R., Sattari, M., Svensson, J.E. & Froitzheim, J. 2013. Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. International Journal of Hydrogen Energy 38(35): 15328- 15334.

Sakai, N., Horita, T., Xiong, Y.P., Yamaji, K., Kishimoto, H., Brito, M.E., Yokokawa, H. & Maruyama, T. 2005. Structure and transport property of manganese-chromium-iron oxide as a main compound in oxide scales of alloy interconnects for SOFCs. Solid State Ionics 176(7-8): 681-686.

Shaigan, N., Qu, W., Ivey, D.G. & Chen, W. 2010. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources 195(6): 1529-1542.

Sun, C., Hui, R. & Roller, J. 2010. Cathode materials for solid oxide fuel cells: A review. Journal of Solid State Electrochemistry 14(7): 1125-1144.

Tucker, M.C., Kurokawa, H., Jacobson, C.P., De Jonghe, L.C. & Visco, S.J. 2006. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials. Journal of Power Sources 160(1): 130-138.

Van Der Heide, P.A.W. 2002. Systematic x-ray photoelectron spectroscopic study of La1-xSrx-based perovskite-type oxides. Surface and Interface Analysis 33(5): 414-425.

Van Herle, J., McEvoy, A.J. & Thampi, K.R. 1994. Conductivity measurements of various yttria-stabilized zirconia samples. Journal of Materials Science 29(14): 3691-3701.

Wu, J. & Liu, X. 2010. Recent development of SOFC metallic interconnect. Journal of Materials Science and Technology 26(4): 293-305.

Xu, Q., Huang, D.P., Zhang, F., Chen, W., Chen, M. & Liu, H.X. 2008. Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathodes. Journal of Alloys and Compounds 454(1-2): 460- 465.

Yang, J.J., Yan, D., Huang, W., Li, J., Pu, J., Chi, B. & Jian, L. 2018. Improvement on durability and thermal cycle performance for solid oxide fuel cell stack with external manifold structure. Energy 149: 903-913.

Yokokawa, H., Horita, T., Sakai, N., Yamaji, K., Brito, M.E., Xiong, Y.P. & Kishimoto, H. 2006. Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177(35-36): 3193-3198.

You, P.F., Zhang, X., Zhang, H.L., Liu, H.J. & Zeng, C.L. 2018. Effect of CeO2 on oxidation and electrical behaviors of ferritic stainless steel interconnects with Ni Fe coatings. International Journal of Hydrogen Energy 43(12): 7492-7500.

Zeng, Y., Wu, J., Baker, A.P. & Liu, X. 2014. Magnetron-sputtered Mn/Co(40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applications. International Journal of Hydrogen Energy 39(28): 16061-16066.

Zeng, P., Ran, R., Chen, Z., Gu, H., Shao, Z., da Costa, J.C.D. & Liu, S. 2007. Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen selective membranes. Journal of Membrane Science 302(1-2): 171-179.

Zhu, W.Z. & Deevi, S.C. 2003. Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance. Materials Research Bulletin 38(6): 957-972.

 

*Corresponding author; email: muchtar@ukm.edu.my

 

 

 

 

previous