Sains Malaysiana 48(4)(2019): 871–876
http://dx.doi.org/10.17576/jsm-2019-4804-19
Palm Oil Mill Effluent as Alternate Carbon
Source for Ammonia Removal in Wastewater Treatment
(Efluen Kilang Kelapa Sawit sebagai Punca Karbon
Silih Ganti untuk Penyingkiran Ammonia dalam Rawatan Air Sisa)
LEH-MING LOH1, YI-WEI YAN1*, PUI-WOON YAP1, RUPINEE NADARAJAN1 & AUGUSTINE SOON-HOCK ONG2
1Biosciences Department,
School of Science and Engineering, Malaysia University of Science and
Technology, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
2Malaysian Oil Scientists'
and Technologists' Association (MOSTA), C3A-10, 4th Floor, Damansara
Intan, 1, Jalan SS 20/7, 47400 Petaling Jaya, Selangor Darul Ehsan,
Malaysia
Received:
17 April 2018/Accepted: 3 September 2018
ABSTRACT
To address high demand in searching
for carbon sources alternatives in ammonia wastewater treatment, comparison
among various carbon sources in term of pollutants reduction efficiency was
essential to determine the most cost-effective carbon source selection for
industry scale in bulk amount. This study focuses on investigating palm oil
mill effluent (POME) as the alternate carbon source
for supporting ammonia oxidizing bacteria (AOB)
in ammonia removal of glove industrial wastewater treatment. Ammonia reduction
efficiency was compared between POME with molasses, one of the
most commonly used carbon sources. POME as carbon source in
ammonia wastewater treatment had shown significant comparable reduction
efficiency as compared to molasses. Furthermore, the study on various mixture
ratios of POME-molasses had also shown further improvement in
ammonia reduction efficiency. At the optimum ratio of 50:50 (v/v) POME-molasses
as carbon source mixture, the ammonia reduction in the treatment system had
achieved 53.11% reduction, which reduced ammonia content down to 10.49 mg/L NH3.
In this study, the results suggested that POME showing
great potential to be the new cost-effective carbon source alternative in
industry scale treatment.
Keywords: Ammonia removal; carbon
source; molasses; palm oil mill effluent; wastewater treatment
ABSTRAK
Untuk memenuhi permintaan yang tinggi
dalam mencari punca karbon alternatif dalam rawatan air sisa berammonia,
perbandingan antara punca karbon daripada sudut kecekapan mengurangkan
pencemaran penting untuk menentukan pemilihan punca karbon yang
paling menjimatkan kos bagi skala industri dalam jumlah pukal. Kajian
ini memfokus kepada penggunaan efluen kilang kelapa sawit (POME)
sebagai punca karbon alternatif untuk sokongan pengoksidaan ammonia
bakteria (AOB)
dalam rawatan pembuangan sisa ammonia bagi industri sarung tangan.
Kecekapan pengurangan ammonia dibandingkan antara POME dengan molases, salah satu
punca karbon yang sering digunakan. POME sebagai punca karbon dalam
rawatan air sisa ammonia telah menunjukkan kecekapan pengurangan
yang ketara berbanding molases. Selain itu, kajian menggunakan
pelbagai nisbah campuran molases-POME juga menunjukkan peningkatan kecekapan
pengurangan ammonia. Pada nisbah optimum, 50: 50 (v/v) POME-Molases
sebagai campuran punca karbon, pengurangan ammonia dalam sistem
rawatan telah mencapai pengurangan 53.11%, yang mengurangkan kandungan
ammonia ke 10.49 mg/L NH3. Dalam kajian ini, keputusan menunjukkan POME
menunjukkan potensi yang tinggi untuk menjadi punca
karbon alternatif dengan kos efektif dalam rawatan berskala industri.
Kata kunci: Efluen kilang kelapa sawit; molases; penyingkiran ammonia;
punca karbon; rawatan air sisa
REFERENCES
Adela, B.N.,
Muzzammil, N., Loh, S.K. & Choo, Y.M. 2014. Characteristics of palm oil
mill effluent (POME) in an anaerobic biogas digester. Asian Journal of
Microbiology, Biotechnology and Environmental Sciences Paper 16(1):
225-231.
Aljuboori,
A.H.R., Uemura, Y., Osman, N.B. & Yusup, S. 2014. Production of a
bioflocculant from Aspergillus niger using palm oil mill effluent as
carbon source. Bioresource Technology 171: 66-70.
Bala, J.D.,
Lalung, J. & Ismail, N. 2014. Palm oil mill effluent (POME) treatment
microbial communities in an anaerobic digester: A review. International
Journal of Scientific and Research Publications 4(6): 1-24.
Department
of Environment Malaysia. 2009. Environmental quality (Industrial Effluent)
regulations 2009, Environmental Quality Act 1974 (Act 127).
Duraisam,
R., Salelgn, K. & Berekete, A.K. 2017. Production of beet sugar and
bio-ethanol from sugar beet and it bagasse: A review. International Journal
of Engineering Trends and Technology 43(4): 222-233.
Gamaralalage,
D., Sawai, O. & Nunoura, T. 2016. Effectiveness of available wastewater
treatment facilities in rubber production industries in Sri Lanka. International
Journal of Environmental Science and Development 7(12): 940.
Heuzé, V.,
Tran, G., Bastianelli, D. & Lebas, F. 2015. Palm oil mill effluent. Feedipedia http://www.feedipedia.org/node/15395.
Igbinosa,
E.O. & Igiehon, O.N. 2015. The impact of cassava effluent on the microbial
and physicochemical characteristics on soil dynamics and structure. Jordan
Journal of Biological Sciences 8(2): 107-112.
Kanu, I.
& Achi, O.K. 2011. Industrial effluents and their impact on water quality
of receiving rivers in Nigeria. Journal of Applied Technology in
Environmental Sanitation 1(1): 75-86.
Kavitha, B.,
Jothimani, P. & Rajannan, G. 2013. Empty fruit bunch-a potential organic
manure for agriculture. International Journal of Science, Environment and
Technology 2(5): 930- 937.
Keluskar,
R., Nerurkar, A. & Desai, A. 2013. Development of a simultaneous partial
nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench
scale process for removal of ammonia from effluent of a fertilizer industry. Bioresource
Technology 130: 390-397.
Mohammadi, M., Man, H.C.,
Hassan, M.A. & Yee, P.L. 2010. Treatment of wastewater from rubber industry
in Malaysia. African Journal of Biotechnology 9(38): 6233-6243.
Nelson, K.Y., McMartin, D.W., Yost, C.K.,
Runtz, K.J. & Ono, T. 2013. Point-of-use water disinfection using UV
light-emitting diodes to reduce bacterial contamination. Environmental
Science and Pollution Research 20(8): 5441-5448.
Ohimain, E.I., Daokoru-Olukole, C., Izah,
S.C., Eke, R.A. & Okonkwo, A.C. 2017. Microbiology of palm oil mill
effluents. Journal of Microbiology and Biotechnology Research 2(6):
852-857.
Pant, D., Van Bogaert, G., Diels, L.
& Vanbroekhoven, K. 2010. A review of the substrates used in microbial fuel
cells (MFCs) for sustainable energy production. Bioresource Technology 101(6):
1533-1543.
Poh, P.E., Yong, W.J. & Chong, M.F.
2010. Palm oil mill effluent (POME) characteristic in high crop season and the
applicability of high-rate anaerobic bioreactors for the treatment of POME. Industrial
& Engineering Chemistry Research 49(22): 11732-11740.
Qureshi, N., Saha, B.C., Dien, B.,
Hector, R.E. & Cotta, M.A. 2010. Production of butanol (a biofuel) from
agricultural residues: Part I–use of barley straw hydrolysate. Biomass
and Bioenergy 34(4): 559-565.
Rizzo, L., Della Sala, A., Fiorentino, A.
& Puma, G.L. 2014. Disinfection of urban wastewater by solar driven and UV
lamp-TiO2 photocatalysis: Effect on a multi drug resistant Escherichia
coli strain. Water Research 53: 145-152.
Shavandi, M.A., Haddadian, Z., Ismail,
M.H.S., Abdullah, N. & Abidin, Z.Z. 2012. Removal of Fe (III), Mn (II) and
Zn (II) from palm oil mill effluent (POME) by natural zeolite. Journal of
the Taiwan Institute of Chemical Engineers 43(5): 750-759.
Verla, A.W., Adowei, P. & Verla, E.N.
2014. Physicochemical and microbiological characteristic of palm oil mill
effluent (Pome) in Nguru: Aboh Mbaise, Eastern Nigeria. Acta Chimica and
Pharmaceutica Indica 4(3): 119-125.
Vital, M., Stucki, D., Egli, T. &
Hammes, F. 2010. Evaluating the growth potential of pathogenic bacteria in
water. Applied and Environmental Microbiology 76(19): 6477-6484.
Yang, J., Zhang, L., Fukuzaki, Y., Hira,
D. & Furukawa, K. 2010. High-rate nitrogen removal by the Anammox process
with a sufficient inorganic carbon source. Bioresource Technology 101(24):
9471-9478.
Yang, X., Wang, S. & Zhou, L. 2012.
Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration
on nitrite and ammonium production from denitrification process by Pseudomonas
stutzeri D6. Bioresource Technology 104: 65-72.
Yapsakli, K., Aliyazicioglu, C. &
Mertoglu, B. 2011. Identification and quantitative evaluation of nitrogen-converting
organisms in a full-scale leachate treatment plant. Journal of Environmental
Management 92: 714-723.
Zafar, S. 2018. Properties and Uses of
POME. https://www. bioenergyconsult.com/tag/what-is-pome/. Accessed on
April 14 2018.
Zhao, Y., Huang, J., Zhao, H. & Yang,
H. 2013. Microbial community and N removal of aerobic granular sludge at high
COD and N loading rates. Bioresource Technology 143: 439-446.
*Corresponding author; email:
ywyan@must.edu.my