Sains Malaysiana 48(4)(2019): 893–899
http://dx.doi.org/10.17576/jsm-2019-4804-22
Outlier Detection in 2 × 2 Crossover
Design using Bayesian Framework
(Pengesanan Titik Terpencil dalam 2 × 2
Reka Bentuk Pindah Silang Menggunakan Rangka Kerja Bayesian)
F.P. LIM1,2, I.B. MOHAMED1*, A.I.N. IBRAHIM1, S.L. GOH3 & N.A. MOHAMED
@ A. RAHMAN1
1Institute of
Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
2Faculty of Sciences,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Sport Medicine Clinic, University
of Malaya Medical Centre, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received:
23 April 2016/Accepted: 20 January 2019
ABSTRACT
We consider the problem of outlier
detection method in 2×2 crossover design via Bayesian framework. We study
the problem of outlier detection in bivariate data fitted using generalized
linear model in Bayesian framework used by Nawama. We adapt their work into a
2×2 crossover design. In Bayesian framework, we assume that the random
subject effect and the errors to be generated from normal distributions.
However, the outlying subjects come from normal distribution with different
variance. Due to the complexity of the resulting joint posterior distribution,
we obtain the information on the posterior distribution from samples by using
Markov Chain Monte Carlo sampling. We use two real data sets to illustrate the
implementation of the method.
Keywords: Bayesian; crossover
design; Markov Chain Monte Carlo; outlier
ABSTRAK
Kami mengambil kira masalah kaedah
pengesanan nilai terpencil dalam kajian pindah silang 2×2 melalui rangka
kerja Bayesian. Kami mengkaji masalah pengesanan titik tersisih bagi data
bivariat yang disuaikan dengan model linear teritlak dalam rangka kerja
Bayesian yang digunakan oleh Nawama. Kami menyesuaikan kerja-kerja tersebut ke
dalam 2×2 kajian pindah silang. Dalam rangka kerja Bayesian, kami
menganggap bahawa kesan subjek rawak dan ralat akan dijana daripada taburan
normal. Walau bagaimanapun, nilai terpencil pula tertabur normal dengan varians
yang berbeza. Disebabkan taburan posterior tercantum yang kompleks, kami
mendapatkan maklumat mengenai taburan posterior daripada sampel yang dijana
melalui pensampelan Markov Chain Monte Carlo (MCMC).
Kami menggunakan dua set data sebenar untuk menggambarkan pelaksanaan kaedah
tersebut.
Kata
kunci: Bayesian; Markov Chain Monte Carlo; reka bentuk pindah silang; titik
terpencil
REFERENCES
Aggarwal, C.C. 2013. Outlier
Analysis. New York: Springer.
Chen, Y.I. & Huang,
C.S. 2015. Bayesian bioequivalence test based on skew normal model for
bioavailability measure. Journal of the Chinese Statistical Association 53:
38-54.
Chow, S.C. & Tse,
S.K. 1990. Outliers detection in bioavailability/ bioequivalence studies. Statistics
in Medicine 9: 549-558.
Clayton, D. &
Leslie, A. 1981. The bioavailability of erythromycin stearate versus
enteric-coated erythromycin based when taken immediately before and after food. Journal of International Medical Research 9: 470-477.
Enachescu, D. &
Enachescu, C. 2009. A new approach for outlying records in bioequivalence
trials. Paper presented at the XIII International Conference Applied
Stochastic Models and Data Analysis 13: 250-257.
Hawkins, D.M. 1980. Identification
of Outliers. London: Chapman and Hall.
Jones, B. & Kenward,
M.G. 1989. Design and Analysis of Cross- Over Trials. 1st edition.
London: Chapman and Hall.
Karasoy, D. &
Daghan, G. 2012. Examination of outliers in bioequivalence studies. Bulletin
of Clinical Psychopharmacology 22(4): 307-312.
Lim, F.P., Mohamed, I.,
Daud, N. & Goh, S.L. 2016. Comparison of outlier detection methods in
standard 2×2 crossover design. Sains Malaysiana 45(3): 499-506.
Liu, J.P. & Weng,
C.S. 1991. Detection of outlying data in bioavailability/bioequivalence
studies. Statistics in Medicine 10: 1375-1389.
Nawama, M., Ibrahim,
A.I.N., Mohamed, I., Yahya, M.S. & Taib, N.A. 2015. Outlier detection using
generalized linear model in Malaysian breast cancer data. Sains Malaysiana 44(10):
1417-1422.
Ramsay, T. & Elkum,
N. 2005. A comparison of four different methods for outlier detection in
bioequivalence studies. Journal of Biopharmaceutical Statistics 15(1):
43-52.
Singh, R., Namdev, K.K.
& Chilkoti, D. 2014. An assessment on handling of outlier subjects in
bioequivalence study - A review. Journal of Pharmaceutical and Bioanalytical
Science 3(1): 14-20.
Tierney, L. 1994. Markov
chains for exploring posterior distributions. The Annals of Statistics 22(4):
1701-1728.
Unnikrishnan, N.K. 2010.
Bayesian analysis for outliers in survey sampling. Computational Statistics
and Data Analysis 54: 1962-1974.
Wang, W. & Chow,
S.C. 2003. Examining outlying subjects and outlying records in bioequivalence
trials. Journal of Biopharmaceutical Statistics 13(1): 43-56.
Weiner, D. 1989. Bioavailability.
Notes on the Training Course for New Clinical Statisticians sponsored by
the Biostatistics Subsections of Pharmaceutical Manufacture Association, March,
1989, Washington, DC.
*Corresponding author; email: imohamed@um.edu.my