Sains Malaysiana 48(4)(2019): 909–920
http://dx.doi.org/10.17576/jsm-2019-4804-24
Model Sistem Dinamik untuk Meramalkan
Bilangan Pesakit dan Keperluan Sumber Tenaga di Zon Kuning Jabatan Kecemasan
(A System Dynamics Model to Predict the Number
of Patients and Resources Required in Emergency Department's
Yellow Zone)
NAZHATUL SAHIMA MOHD YUSOFF1, CHOONG-YEUN LIONG2*, ABU YAZID MD NOH3, WAN ROSMANIRA ISMAIL2 & NORAZURA AHMAD4
1Faculty of Computer
Sciences & Mathematics, Universiti Teknologi MARA (UiTM), Cawangan
Kelantan, 18500 Machang, Kelantan Darul Naim, Malaysia
2Statistics Program, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Emergency Department,
Hospital Universiti Sains Malaysia (HUSM), Jalan Raja Perempuan Zainab 2, 16150
Kota Bharu, Kelantan Darul Naim, Malaysia
4School of Quantitative
Sciences, CAS Universiti Utara Malaysia, 06010 Sintok, Kedah Darul Aman,
Malaysia
Received:
15 May 2018/Accepted: 8 February 2019
ABSTRAK
Jabatan Kecemasan Hospital
Universiti Sains Malaysia (JKHUSM) telah menunjukkan perubahan
yang pesat dan menghadapi transformasi drastik berhubung dengan kepentingan
dalam sistem penjagaan kesihatan. Peramalan dan perancangan sumber yang
munasabah perlu dilakukan bagi memenuhi permintaan pesakit yang kian bertambah.
Justeru, kajian ini memfokuskan kepada Zon Kuning di JKHUSM yang
memerlukan perancangan sewajarnya atas keperluan sumber yang sepatutnya
disediakan pada masa kini dan akan datang untuk membantu pihak pengurusan dalam
perancangan strategik jabatan serta menambah baik aliran pesakit dan
perkhidmatan di zon tersebut. Pemodelan Sistem Dinamik telah dibangunkan untuk
meramalkan bilangan pesakit yang akan berkunjung serta jumlah sumber yang
diperlukan untuk memenuhi permintaan perkhidmatan di Zon Kuning JKHUSM pada
masa sekarang (2014) dan masa hadapan bagi tempoh lima (2019) dan sepuluh tahun
akan datang (2024). Hasil kajian meramalkan sumber yang diperlukan bagi
memenuhi permintaan pesakit yang berkunjung di Zon Kuning pada masa sekarang
adalah seramai 11 orang doktor, 12 orang jururawat dan 18 buah katil berbanding
dengan sembilan orang doktor, sembilan orang jururawat dan 16 buah katil sedia
ada. Seterusnya penambahan dua buah katil diramalkan untuk memenuhi keperluan
pesakit bagi tempoh lima dan sepuluh tahun akan datang. Manakala tiada
penambahan doktor dan jururawat diperlukan bagi memenuhi permintaan pesakit
bagi tempoh lima tahun akan datang. Namun begitu dijangkakan penambahan seorang
doktor dan seorang jururawat diperlukan bagi memenuhi permintaan 10 tahun akan
datang. Oleh itu, peramalan penambahan sumber ini adalah sangat penting untuk
menambah baik aliran pesakit di Zon Kuning JKHUSM serta
membantu dalam mencapai Penunjuk Prestasi Utama jabatan ini. Hasil kajian yang
diperoleh akan membantu pihak pengurusan membuat keputusan yang wajar dengan
belanjawan yang telah ditetapkan demi meningkatkan kualiti perkhidmatan yang
ditawarkan di samping meningkatkan tahap prestasi Zon Kuning JKHUSM.
Kata kunci: Jabatan kecemasan;
penunjuk prestasi utama; peramalan; sistem dinamik; sumber tenaga; zon kuning
ABSTRACT
Emergency Department of Hospital Universiti
Sains Malaysia (EDHUSM) has shown rapid changes and is
facing a drastic transformation in relation to the importance
of the healthcare system. Reasonable resource forecasting and
planning should be done to meet the growing demands of patients.
Hence, this study is focusing on the Yellow Zone in JKHUSM
which requires proper planning on the needs of
the resources that should be available now and in the future
to assist the management in the department’s strategic
planning as well as to improve the patients flow and services
in the zone. Systems Dynamics modeling is used to forecast the
number of patients that will visit, and predict the resources
required to match the demand and supply in the Yellow Zone at
present (2014) and in the future for the next five (2019) and
ten years (2024). The results showed that 11 doctors, 12 nurses
and 18 beds are needed compared to nine doctors, nine nurses
and 16 beds to cater for patients visiting the Yellow Zone at
present. Furthermore, an addition of two beds is predicted to
meet the patient's needs over the next five and ten years. Meanwhile,
no additional doctors and nurses are required to meet the patient's
demand for the next five years. However, the addition of a doctor
and a nurse is needed to meet the next 10 years' demand. Therefore,
forecasting of these resources is crucial to improve the patients
flow in the Yellow Zone of EDHUSM and to assist in achieving the Key Performance
Indicator of the department. The results of the study will help
the management to make the right decision within their stipulated
budget to improve the quality of services rendered and further
enhance the performance of EDHUSM's
Yellow Zone.
Keywords:
Emergency department; forecasting; key performance indicator; resources; system
dynamics; yellow zone
REFERENCES
Alasad, R., Motawa, I. & Ogunlana, S.
2012. A system dynamic-based method for demand forecasting in infrastructure
projects-A case of PPP projects. Proceeding of 28th Annual ARCOM Conference. hlm. 327-336.
Al-Refaie, A., Fouad, R.H., Li, M. &
Shurrab, M. 2014. Applying simulation and DEA to improve performance of
emergency department in a Jordanian hospital. Simulation Modelling Practice
and Theory 41: 59-72.
Aminuddin, W.M.W.M., Ismail, W.R. &
Husyairi, H. 2016. Estimating emergency department maximum capacity using
simulation and data envelopment analysis. Indian Journal of Sciences &
Technology 9(28): 1-10.
Azaiez, M.N. & Al-Sharif, S. 2005. A
0-1 goal programming model for nurse scheduling. Computers & Operations
Research 32: 491-507.
Blasak, E.R., Starks, W.D., Armel, S.W.
& Hayduk, C. 2003. The use of simulation to evaluate hospital operations
between the emergency department and a medical telemetry unit. Proceeding of
2003 Winter Simulation Conference. hlm. 1887-1893.
Brailsford, S.C., Desai, S.M. & Viana,
J. 2010. Towards the holygrail: Combining system dynamics and discrete-event
simulation in healthcare. Proceeding of 2010 Winter Simulation Conference. hlm.
2293-2303.
Brennan, J.J., Chan, T.C., Hsia, R.Y.,
Vike, G.M., Killeen, J.P. & Castillo, E.M. 2014. Predicting frequent use of
emergency department resources. An International Journal of Annals of
Emergency Medicine 64: S118-S119.
Chahal, K. & Eldabi, T.
2008. Applicability of hybrid simulation to different models of governance in
UK healthcare. Proceeding of 2008 Winter Simulation Conference. hlm.
1469-1477.
Gunal, M.M. & Pidd, M. 2010. Discrete
event simulation for performance modelling in healthcare: A review of the
literature. Journal of Simulation 4(1): 42-51.
Hasimah, S., Jafri, Z., Norazura, A.,
Norhaslinda, Z.A. & Nurul, N.H. 2017. Introduction to System Dynamics
Modelling and Vensim Software. Serdang: UPM Press.
Hassan, F.A. & Minato, N. 2017. A
system dynamics analysis of Malaysian healthcare resources. International
Journal of Japan Association for Management Systems 9(1): 61-69.
Hong, N.C. & Ghani, N.A. 2006. A
model for predicting average ambulance service travel times in Penang Island. Proceeding
of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and
Applications. University Sains Malaysia.
Hospital Universiti Sains Malaysia. 2016. Sejarah Hospital USM. http://h.usm.my/v3/index.php/perkhidmatan. Diakses
pada 25 Oktober 2017.
Ibrahim, I.M., Liong, C.Y., Bakar, S.A.
& Ahmad, N. 2018a. Estimating optimal resource capacities in emergency
department. Indian Journal of Public Health Research & Development 9(11):
1559-1565.
Ibrahim, I.M., Liong, C.Y., Bakar, S.A.
& Ahmad, N. 2018b. Performance improvement of the yellow zone in emergency
department using discrete event simulation approach. International Journal
of Engineering & Technology 7(4): 102-105.
Ibrahim, I.M., Liong, C.Y., Bakar, S.A.,
Ahmad, N. & Najmuddin, A.F. 2017. Minimizing patient waiting time in
emergency department of public hospital using simulation optimization approach. The 4th International Conference on Mathematical Sciences, AIP
Conference Proceedings. 1830: 1-8.
Jeenanunta, C., Ayudhya, S.I.N.,
Doungraksa, P., Sereewattanapong, C., Pongtanupattana, A. & Nuchjarin, I.
2013. Resource analysis in emergency department using simulation-based
framework. The 4th International Conference on Engineering Project and
Production Management. hlm. 1073-1083.
Kelton, W.D., Sadowski, R.P. &
Zupick, N.B. 2015. Simulation with ARENA. 6th ed. Singapore:
McGraw-Hill Education.
Komashie, A. & Mousavi, A. 2005.
Modeling emergency departments using discrete event simulation techniques. Proceedings
of 2005 Winter Simulation Conference. hlm. 2681-2685.
McHugh, M., Van Dyke, K., McClelland, M.
& Moss, D. 2011. Improving Patient Flow and Reducing Emergency
Department Crowding: A Guide for Hospitals. AHRQ Publication.
Mohd, R.Z., Muthukkaruppan, I., Kassim.
& Rashidi, A. 2016. Estimating the right allocation of doctors in emergency
department. Proceedings of 2016 Management International Conference (KMICe). hlm. 446-452.
Norazura, A., Noraida, A.G., Anton, A.K.
& Razman, M.T. 2014. Managing resource capacity using hybrid simulation. International
Conference on Quantitative Sciences and Its Applications. hlm. 504-511.
Norazura, A., Noraida, A.G., Anton, A.K.
& Razman, M.T. 2013. Simulating the impact of an increase in patient volume
on a government emergency department in Malaysia. International Proceedings
of Economics Development and Research (IPEDR). hlm. 78-82.
Norazura, A., Noraida, A.G., Anton, A.K.
& Razman, M.T. 2012a. Emergency department problems: A call for hybrid
simulation. Proceedings of the World Congress on Engineering Vol III.
Norazura, A., Noraida, A.G., Anton, A.K.
& Razman, M.T. 2012b. Evaluating emergency department resource capacity
using simulation. Modern Applied Science 6(11): 9-19.
Paul, S.A., Reddy, M.C. & DeFlitch,
C.J. 2010. A systematic review of simulation studies investigating emergency
department overcrowding. Simulation 86(8-9): 559-571.
Rashwan, W., Abo-Hamad, W. & Arisha,
A. 2015. A system dynamics view of acute bed blockage problem in Irish
healthcare system. European Journal of Operational Research 247(1):
276-293.
Rafael, C., Flavio, S.F., Filipe, R.L.,
Jeruza, N., Ricardo, S.K. & Beatriz, D.S. 2016. Forecasting daily volume
and acuity of patients in the emergency department. Computational and
Mathematical Methods in Medicine 2016: 3863268.
Saghafian, S., Hopp, W.J., Van Oyen,
M.P., Desmond, J.S. & Kronick, S.L. 2012. Patient streaming as a mechanism
for improving responsiveness in emergency departments. Operation Research 60(5):
1080-1097.
Sterman, J. 2000. Business Dynamics:
System Thinking and Modelling for a Complex World. Boston: McGraw-Hill.
Tehseen, A. & Amos, H.C.N. 2015.
Strategy evaluation using system dynamics and multi-objective optimization for
an internal supply chain. Proceedings of the 2015 Winter Simulation
Conference. hlm. 2033-2044.
Uriarte, A.G., Zuniga, E.R., Moris, M.U.
& Ng, A.H.C. 2015. System design and improvement of an emergency department
using simulation-based multi-objective optimization. Journal of Physics 1:
1-11.
Weng, S.J., Tsai, L.M., Wang, C.Y.,
Chang, C.Y. & Gotcher, D. 2011. Using simulation and data envelopment
analysis in optimal healthcare efficiency allocations. Proceeding of 2011
Winter Simulation Conference, Indian Journal of Science and Technology. hlm.
1295-1305.
Wu, J., Shaun, J.G., Huiping, X. &
John, T.F. 2016. A practical method for predicting frequent use of emergency
department care using routinely available electronic registration data. BMC
Emergency Medicine 16(12): 1-9.
Yusoff, N.S.M., Liong, C.Y., Ismail,
W.R., Noh, A.Y.M. & Noor, N.A.M. 2017. Estimating the right allocation of
resources on weekends and public holidays in Green Zone using hybrid methods. The
2017 UKM FST Postgraduate Colloqium: Proceedings of the University Kebangsaan
Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloqium.
American Institute of Physics Inc. 1940: 020123
Yusoff, N.S.M., Liong, C.Y., Ismail,
W.R., Noh, A.Y.M. & Ahmad, N. 2018a. A system dynamics model for predicting
present and future demands in emergency department’s Green Zone. Indian Journal
of Public Health Research & Development 9(11): 1566-1572.
Yusoff, N.S.M., Liong, C.Y., Noh, A.Y.M.
& Ismail, W.R. 2018b. Discrete event simulation and data
envelopment analysis models for selecting the best resource
allocation alternative at an emergency department's Green Zone.
Sains Malaysiana 47(11): 2917-2925.
*Corresponding author; email:
lg@ukm.edu.my