Sains Malaysiana 48(4)(2019): 921–925

http://dx.doi.org/10.17576/jsm-2019-4804-25

 

Carbon Absorption Control Model of Oil Palm Plantation

(Model Kawalan Penyerapan Karbon Ladang Kelapa Sawit)

 

NORYANTI NASIR1,2*, MOHD ISMAIL ABD AZIZ1,3 & AKBAR BANITALEBI1,3

 

1Department of Mathematical Sciences, Faculty of Sciences, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor Darul Takzim, Malaysia

 

2Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Kampus Seremban, Persiaran Seremban Tiga/1, Seremban 3, 70300 Seremban, Negeri Sembilan Darul Khusus, Malaysia

 

3UTM Center for Industrial and Applied Mathematics, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 7 January 2017/Accepted: 28 September 2017

 

ABSTRACT

Among the largest and growing oil palm industries, Malaysia plays an important role in the world’s oil market. The contribution of the palm plantation in absorbing carbon from the atmosphere is also considerable thought, it is rarely studied. The role of the plantation in balancing carbon dioxide is significant. However, the ability of palm tree in absorbing carbon may vary within the lifespan of the plant. Therefore, managing the plantation to reach the maximum carbon dioxide absorption along with maximum oil production is challenging. This study is aimed at analyzing the carbon absorption level of the palm oil plantation. A mathematical model is proposed by considering the characteristics of palm oil trees in absorbing carbon and producing oil. It is assumed that the rate of felling can be controlled, and a system of ordinary differential equations is developed to describe the behaviour of the plantation in terms of biomass and growth rate dynamics. The resulting parameter estimation problem is solved which leads to an optimal control problem. The objective of this problem was to maximize the oil production as well as carbon absorption. Numerical simulation is illustrated to highlight the application of the proposed model.

 

Keywords: Carbon absorption; optimal control model; palm oil biomass

 

ABSTRAK

Malaysia antara negara industri kelapa sawit terbesar dan masih berkembang yang memainkan peranan penting dalam pasaran minyak dunia. Sumbangan perladangan kelapa sawit dalam menyerap karbon dari atmosfera amat mustahak, namun jarang dikaji. Walau bagaimanapun, keupayaan pokok sawit dalam menyerap karbon mungkin berbeza mengikut jangka hayat tumbuhan. Oleh itu menguruskan ladang untuk mencapai penyerapan karbon dioksida yang maksimum berserta dengan pengeluaran minyak maksimum adalah mencabar. Kajian ini bertujuan untuk menganalisis tahap penyerapan karbon daripada ladang kelapa sawit. Model matematik adalah dicadangkan dengan mengambil kira ciri-ciri pokok kelapa sawit dalam menyerap karbon dan menghasilkan minyak. Ia diandaikan bahawa kadar penebangan boleh dikawal, sistem persamaan pembezaan biasa (ODE) dibangunkan untuk menerangkan tingkah laku perladangan daripada segi biojisim dan kadar pertumbuhan dinamik. Keputusan daripada parameter anggaran membawa kepada penyelesaian masalah kawalan optimum. Objektif masalah ini adalah untuk memaksimumkan pengeluaran minyak serta penyerapan karbon. Simulasi berangka digambarkan untuk menyerlahkan aplikasi model yang dicadangkan.

 

Kata kunci: Kelapa sawit biojisim; model kawalan optimum, penyerapan karbon

REFERENCES

Aholoukpè, H., Dubos, B., Flori, A., Deleporte, P., Amadji, G., Chotte, J.L. & Blavet, D. 2013. Estimating aboveground biomass of oil palm: Allometric equations for estimating frond biomass. Forest Ecology and Management 292: 122-129.

Al-Amin, A.Q., Rajah, R. & Chenayah, S. 2015. Prioritizing climate change mitigation: An assessment using Malaysia to reduce carbon emissions in future. Environmental Science & Policy 50: 24-33.

Assmuth, A. & Tahvonen, O. 2015. Continuous cover forestry vs clearcuts with optimal carbon storage. University of Helsinki. pp. 1-36.

Backeus, S., Wikstrom, P. & Lamas, T. 2006. Modeling carbon sequestration and timber production in a regional case study. Silva Fennica 40(4): 615-629.

Banitalebi, A., Mohd Ismail, Abd Aziz., Zainal, Abdul Aziz & Noryanti Nasir. 2016. Modelling and optimization for palm oil plantation management. Advances in Industrial and Applied Mathematics: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23) 1750: 030046.

Basiron, Y. 2007. Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology 109: 289-295.

Conn, A.R., Scheinberg, K. &Vicente, L.N. 2009. Introduction to Derivative-Free Optimization Book. 1: 277. doi:10.1137/1.9780898718768.

Corley, R.H.V. & Tinker, P.B. 2003. The Palm Oil. Oxford: Blackwell Science Ltd.

Corley, R.H.V., Hardon, J.J., Tang, Y. & Tan, G.Y. 1971. Analysis of growth of the oil palm (Elaeis Guineensis Jacq.) I. estimation of growth parameters and application in breeding. Euphytica 20: 307-315.

Gaoue, O.G., Jiang, J., Ding, W., Agusto, F.B. & Lenhart, S. 2016. Optimal harvesting strategies for timber and non-timber forest products in tropical ecosystems. Theoretical Ecology 9(3): 287-297.

Germer, J. & Sauerborn, J. 2008. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environment, Development and Sustainability 10(6): 697-716.

Goetz, R., Hritonenko, N., Xabadia, A. & Yatsenko, Y. 2007. Using the escalator boxcar train to determine the optimal management of a size-distributed forest when carbon sequestration is taken. Large-Scale Scientific Computing 4818: 334-341.

Hritonenko, N., Yatsenko, Y., Renan-Ulrich, G. & Xabadia, A. 2008. Maximum principle for a size-structured model of forest and carbon sequestration management. Applied Mathematics Letters 21(10): 1090-1094.

Jiao, Y.Y., Ren, H.E. & Dong, B.Z. 2011. Optimal estimation of forest carbon sequestration based on eddy correlation method. Advances in Computer Science, Intelligent System and Environment 2(105): 421-426.

Jones, D.A. & O’Hara, K.L. 2012. Carbon density in managed coast redwood stands: Implications for forest carbon estimation. Forestry 85(1): 99-110.

Kato, N. 2008. Optimal harvesting for nonlinear size-structured population dynamics. Journal of Mathematical Analysis and Applications 342(2): 1388-1398.

Khamiz, A., Ismail, Z. & Muhammad, A.T. 2005. Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics 1(3): 225-233.

Kho, L.K. & Jepsen, M.R. 2015. Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. Singapore Journal of Tropical Geography 36: 249-266.

Kongsager, R., Napier, J. & Mertz, O. 2013. The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change 18(8): 1197- 1213.

Kula, E. & Gunalay, Y. 2012. Carbon sequestration, optimum forest rotation and their environmental impact. Environmental Impact Assessment Review 37(11): 18-22.

Mekhilef, S., Siga, S. & Saidur, R. 2011. A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews 15(4): 1937-1949.

Patthanaissaranukool, W., Polprasert, C. & Englande, A.J. 2013. Potential reduction of carbon emissions from crude palm oil production based on energy and carbon balances. Applied Energy 102: 710-717.

Pei, W., Ng, Q., Loong, H., Yuen, F., Kamal, M., Heng, J. & Lim, E. 2012. Waste-to-wealth: Green potential from palm biomass in Malaysia. Journal of Cleaner Production 34: 57-65.

Pulhina, F.B., Lascob, R.D. & Urquiolab, J.P. 2014. Carbon sequestration potential of oil palm in Bohol, Philippines. Ecosystems & Development Journal 4: 14-19.

Sanquetta, C.R., Pélliconetto, S., Paula, A., Corte, D., Lourenço, A., Behling, Ale., Niroh, M. & Sanquetta, I. 2015. Quantifying biomass and carbon stocks in oil palm (Elaeis guineensis Jacq.) in Northeastern Brazil. African Journal of Agricultural Research 10(43): 4067-4075.

Sharma, M. 2013. Sustainability in the cultivation of oil palm-issues & prospects for the industry. Journal of Oil Palm & The Environment An Official Publication of the Malaysian Palm Oil Council (MPOC) 4: 47-68.

Sohngen, B., Golub, A. & Hertel, T.W. 2009. The role of forestry in carbon sequestration in general equilibrium models. Economic Analysis of Land Use in Global Climate Change Policy 49: 279-303.

Sohngen, B. & Mendelsohn, R. 2003. An optimal control model of forest carbon sequestration. American Journal of Agricultural Economics 85(2): 448-457.

Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávilaa, G., Alvaradoa, E., Povedaa, V., Astorgaa, C., Saya, E. & Deheuvelsb, O. 2013. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems & Environment 173: 46-57.

Sukiran, M.A., Kartini, N.O.R., Bakar, A.B.U. & Chow, M.E.E.C. 2009. Optimization of pyrolysis of oil palm empty fruit bunches optimization of pyrolysis of oil palm empty fruit bunches. American Journal of Applied Sciences 21(6): 653-658.

Syahrinudin. 2005. The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. Ecology and Development Series. Goettingen: Cuvillier Verlag.

Teo, K.L. 1991. A unified computational approach to optimal control problems. Proceedings of the First World Congress on World Congress of Nonlinear Analysts, Volume III. New York: Longman Scientific & Technical.

Wicke, B., Sikkema, R., Dornburg, V. & Faaij, A. 2011. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28(1): 193-206.

Xabadia, A. & Goetz, R.U. 2010. The optimal selective logging regime and the faustmann formula. Journal of Forest Economics 16(1): 63-82.

 

*Corresponding author; email: noryanti4@live.utm.my

 

 

previous