Sains Malaysiana 48(4)(2019): 921–925
http://dx.doi.org/10.17576/jsm-2019-4804-25
Carbon Absorption Control Model of Oil
Palm Plantation
(Model Kawalan Penyerapan Karbon Ladang Kelapa
Sawit)
NORYANTI NASIR1,2*, MOHD ISMAIL ABD AZIZ1,3 & AKBAR BANITALEBI1,3
1Department of
Mathematical Sciences, Faculty of Sciences, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
2Faculty of Computer and
Mathematical Sciences, Universiti Teknologi MARA, Kampus Seremban, Persiaran
Seremban Tiga/1, Seremban 3, 70300 Seremban, Negeri Sembilan Darul Khusus,
Malaysia
3UTM Center for
Industrial and Applied Mathematics, Universiti Teknologi Malaysia, 81310 UTM,
Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
Received:
7 January 2017/Accepted: 28 September 2017
ABSTRACT
Among the largest and growing oil
palm industries, Malaysia plays an important role in the world’s oil market.
The contribution of the palm plantation in absorbing carbon from the atmosphere
is also considerable thought, it is rarely studied. The role of the plantation
in balancing carbon dioxide is significant. However, the ability of palm tree
in absorbing carbon may vary within the lifespan of the plant. Therefore,
managing the plantation to reach the maximum carbon dioxide absorption along
with maximum oil production is challenging. This study is aimed at analyzing
the carbon absorption level of the palm oil plantation. A mathematical model is
proposed by considering the characteristics of palm oil trees in absorbing
carbon and producing oil. It is assumed that the rate of felling can be
controlled, and a system of ordinary differential equations is developed to
describe the behaviour of the plantation in terms of biomass and growth rate
dynamics. The resulting parameter estimation problem is solved which leads to
an optimal control problem. The objective of this problem was to maximize the
oil production as well as carbon absorption. Numerical simulation is
illustrated to highlight the application of the proposed model.
Keywords: Carbon absorption; optimal
control model; palm oil biomass
ABSTRAK
Malaysia antara negara industri
kelapa sawit terbesar dan masih berkembang yang memainkan peranan penting dalam
pasaran minyak dunia. Sumbangan perladangan kelapa sawit dalam menyerap karbon
dari atmosfera amat mustahak, namun jarang dikaji. Walau bagaimanapun,
keupayaan pokok sawit dalam menyerap karbon mungkin berbeza mengikut jangka
hayat tumbuhan. Oleh itu menguruskan ladang untuk mencapai penyerapan karbon
dioksida yang maksimum berserta dengan pengeluaran minyak maksimum adalah
mencabar. Kajian ini bertujuan untuk menganalisis tahap penyerapan karbon
daripada ladang kelapa sawit. Model matematik adalah dicadangkan dengan
mengambil kira ciri-ciri pokok kelapa sawit dalam menyerap karbon dan
menghasilkan minyak. Ia diandaikan bahawa kadar penebangan boleh dikawal,
sistem persamaan pembezaan biasa (ODE) dibangunkan untuk
menerangkan tingkah laku perladangan daripada segi biojisim dan kadar
pertumbuhan dinamik. Keputusan daripada parameter anggaran membawa kepada
penyelesaian masalah kawalan optimum. Objektif masalah ini adalah untuk
memaksimumkan pengeluaran minyak serta penyerapan karbon. Simulasi berangka
digambarkan untuk menyerlahkan aplikasi model yang dicadangkan.
Kata kunci: Kelapa sawit biojisim; model kawalan optimum,
penyerapan karbon
REFERENCES
Aholoukpè,
H., Dubos, B., Flori, A., Deleporte, P., Amadji, G., Chotte, J.L. & Blavet,
D. 2013. Estimating aboveground biomass of oil palm: Allometric equations for
estimating frond biomass. Forest Ecology and Management 292: 122-129.
Al-Amin,
A.Q., Rajah, R. & Chenayah, S. 2015. Prioritizing climate change
mitigation: An assessment using Malaysia to reduce carbon emissions in future. Environmental
Science & Policy 50: 24-33.
Assmuth, A.
& Tahvonen, O. 2015. Continuous cover forestry vs clearcuts with optimal
carbon storage. University of Helsinki. pp. 1-36.
Backeus, S.,
Wikstrom, P. & Lamas, T. 2006. Modeling carbon sequestration and timber
production in a regional case study. Silva Fennica 40(4): 615-629.
Banitalebi,
A., Mohd Ismail, Abd Aziz., Zainal, Abdul Aziz & Noryanti Nasir. 2016.
Modelling and optimization for palm oil plantation management. Advances in
Industrial and Applied Mathematics: Proceedings of 23rd Malaysian National
Symposium of Mathematical Sciences (SKSM23) 1750: 030046.
Basiron, Y.
2007. Palm oil production through sustainable plantations. European Journal
of Lipid Science and Technology 109: 289-295.
Conn, A.R.,
Scheinberg, K. &Vicente, L.N. 2009. Introduction to Derivative-Free
Optimization Book. 1: 277. doi:10.1137/1.9780898718768.
Corley,
R.H.V. & Tinker, P.B. 2003. The Palm Oil. Oxford: Blackwell Science
Ltd.
Corley,
R.H.V., Hardon, J.J., Tang, Y. & Tan, G.Y. 1971. Analysis of growth of the
oil palm (Elaeis Guineensis Jacq.) I. estimation of growth parameters
and application in breeding. Euphytica 20: 307-315.
Gaoue, O.G.,
Jiang, J., Ding, W., Agusto, F.B. & Lenhart, S. 2016. Optimal harvesting
strategies for timber and non-timber forest products in tropical ecosystems. Theoretical
Ecology 9(3): 287-297.
Germer, J.
& Sauerborn, J. 2008. Estimation of the impact of oil palm plantation
establishment on greenhouse gas balance. Environment, Development and
Sustainability 10(6): 697-716.
Goetz, R.,
Hritonenko, N., Xabadia, A. & Yatsenko, Y. 2007. Using the escalator boxcar
train to determine the optimal management of a size-distributed forest when carbon
sequestration is taken. Large-Scale Scientific Computing 4818: 334-341.
Hritonenko,
N., Yatsenko, Y., Renan-Ulrich, G. & Xabadia, A. 2008. Maximum principle
for a size-structured model of forest and carbon sequestration management. Applied
Mathematics Letters 21(10): 1090-1094.
Jiao, Y.Y.,
Ren, H.E. & Dong, B.Z. 2011. Optimal estimation of forest carbon
sequestration based on eddy correlation method. Advances in Computer
Science, Intelligent System and Environment 2(105): 421-426.
Jones, D.A.
& O’Hara, K.L. 2012. Carbon density in managed coast redwood stands:
Implications for forest carbon estimation. Forestry 85(1): 99-110.
Kato, N.
2008. Optimal harvesting for nonlinear size-structured population dynamics. Journal
of Mathematical Analysis and Applications 342(2): 1388-1398.
Khamiz, A.,
Ismail, Z. & Muhammad, A.T. 2005. Nonlinear growth models for modeling oil
palm yield growth. Journal of Mathematics and Statistics 1(3): 225-233.
Kho, L.K.
& Jepsen, M.R. 2015. Carbon stock of oil palm plantations and tropical
forests in Malaysia: A review. Singapore Journal of Tropical Geography 36:
249-266.
Kongsager,
R., Napier, J. & Mertz, O. 2013. The carbon sequestration potential of tree
crop plantations. Mitigation and Adaptation Strategies for Global Change 18(8):
1197- 1213.
Kula, E.
& Gunalay, Y. 2012. Carbon sequestration, optimum forest rotation and their
environmental impact. Environmental Impact Assessment Review 37(11):
18-22.
Mekhilef,
S., Siga, S. & Saidur, R. 2011. A review on palm oil biodiesel as a source
of renewable fuel. Renewable and Sustainable Energy Reviews 15(4):
1937-1949.
Patthanaissaranukool, W.,
Polprasert, C. & Englande, A.J. 2013. Potential reduction of carbon
emissions from crude palm oil production based on energy and carbon balances. Applied
Energy 102: 710-717.
Pei, W., Ng, Q., Loong, H., Yuen, F.,
Kamal, M., Heng, J. & Lim, E. 2012. Waste-to-wealth: Green potential from
palm biomass in Malaysia. Journal of Cleaner Production 34: 57-65.
Pulhina, F.B., Lascob, R.D. &
Urquiolab, J.P. 2014. Carbon sequestration potential of oil palm in Bohol,
Philippines. Ecosystems & Development Journal 4: 14-19.
Sanquetta, C.R., Pélliconetto, S., Paula,
A., Corte, D., Lourenço, A., Behling, Ale., Niroh, M. & Sanquetta, I. 2015.
Quantifying biomass and carbon stocks in oil palm (Elaeis guineensis Jacq.)
in Northeastern Brazil. African Journal of Agricultural Research 10(43):
4067-4075.
Sharma, M. 2013. Sustainability in the
cultivation of oil palm-issues & prospects for the industry. Journal of
Oil Palm & The Environment An Official Publication of the Malaysian Palm
Oil Council (MPOC) 4: 47-68.
Sohngen, B., Golub, A. & Hertel, T.W.
2009. The role of forestry in carbon sequestration in general equilibrium
models. Economic Analysis of Land Use in Global Climate Change Policy 49:
279-303.
Sohngen, B. & Mendelsohn, R. 2003. An
optimal control model of forest carbon sequestration. American Journal of
Agricultural Economics 85(2): 448-457.
Somarriba, E., Cerda, R., Orozco, L.,
Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávilaa, G., Alvaradoa, E.,
Povedaa, V., Astorgaa, C., Saya, E. & Deheuvelsb, O. 2013. Carbon stocks
and cocoa yields in agroforestry systems of Central America. Agriculture,
Ecosystems & Environment 173: 46-57.
Sukiran, M.A., Kartini, N.O.R., Bakar,
A.B.U. & Chow, M.E.E.C. 2009. Optimization of pyrolysis of oil palm empty
fruit bunches optimization of pyrolysis of oil palm empty fruit bunches. American
Journal of Applied Sciences 21(6): 653-658.
Syahrinudin. 2005. The potential of oil
palm and forest plantations for carbon sequestration on degraded land in
Indonesia. Ecology and Development Series. Goettingen: Cuvillier Verlag.
Teo, K.L. 1991. A unified computational
approach to optimal control problems. Proceedings of the First World
Congress on World Congress of Nonlinear Analysts, Volume III. New York:
Longman Scientific & Technical.
Wicke, B., Sikkema, R., Dornburg, V.
& Faaij, A. 2011. Exploring land use changes and the role of palm oil
production in Indonesia and Malaysia. Land Use Policy 28(1): 193-206.
Xabadia, A. & Goetz, R.U. 2010. The
optimal selective logging regime and the faustmann formula. Journal of
Forest Economics 16(1): 63-82.
*Corresponding author; email:
noryanti4@live.utm.my