Sains Malaysiana 48(5)(2019):
1025–1033
http://dx.doi.org/10.17576/jsm-2019-4805-11
Immobilization of Choline Chloride:
Urea onto Mesoporous Silica for Carbon Dioxide Capture
(Pemegunan Kolina Klorida: Urea ke atas Silika
Mesoliang
untuk Penangkapan Karbon Dioksida)
ZAITUN GHAZALI1,2,
NUR
HASYAREEDA
HASSAN1,2,
MOHD
AMBAR
YARMO1,3,
TEH
LEE
PENG1,3
& RIZAFIZAH OTHAMAN1,2*
1School of Chemical Sciences and Food Technology, Faculty of Science
and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Polymer Research
Center, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Catalyst Research
Group, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
7 February 2019/Accepted: 28 March 2019
ABSTRACT
A green composite adsorbent based
on mesoporous silica-gel (SG) and deep eutectic solvent
(DES)
mixture of choline chloride-urea (ChCl:U)
was synthesized as an alternative for carbon dioxide (CO2) adsorption.
The composite adsorbent was prepared by wet impregnation technique
with various ChCl:U
(mole ratio 1:2) content in SG at 5-15% (w/w). Fourier transform
infrared attenuated total reflectance (ATR-FTIR) results showed successful
impregnation of ChCl:U
into SG with the presence of C=O carbonyl amide group stretching,
N-H scissoring bending, CH2 bending and C-N stretching peaks.
Thermal degradation of the adsorbent started with urea at 130°C
followed by ChCl at 300°C. Meanwhile,
nitrogen physisorption demonstrated a decrease in specific surface
areas of the sorbents with increasing ChCl:U
weight percentage due to the blockage of micropores
by ChCl:U. The optimum CO2 adsorption
capacity of 22.3 mg/g was achieved by 10% ChCl:U/SG200,
which was higher than the immobilised
SG200, hence making it relevant to become a green and economical
adsorbent for CO2 capture.
Keywords: Adsorption; carbon
capture; choline chloride; deep eutectic solvent; silica gel;
urea
ABSTRAK
Penjerap komposit hijau berasaskan gel silika mesoliang (SG)
dan pelarut eutektik
dalam (DES) kolona
klorida-urea (ChCl:U)
disintesis untuk
penjerapan karbon dioksida (CO2). Penjerap
komposit telah
disediakan dengan teknik penjejalan basah dengan muatan
5-15% (b/b) ChCl:U
(nisbah mol 1:2). Spektrum inframerah transformasi Fourier-pantulan penuh kecil (ATR-FTIR)
membuktikan bahawa
ChCl:U telah berjaya
dijejalkan ke
atas SG dengan kehadiran puncak regangan kumpulan karbonil amida C=O , bengkokan N-H , bengkokan CH2 dan regangan C-N. Suhu degradasi penjerap bermula dengan urea pada 130°C diikuti oleh ChCl
pada 300°C. Analisis
penjerapan fizikal nitrogen menunjukkan penurunan luas permukaan dengan peningkatan peratus berat ChCl:U
disebabkan mikroliang
yang dilitupi oleh ChCl:U. Kapasiti
penjerapan CO2 yang optimum (22.3 mg/g) tercapai dengan menggunakan 10% ChCl:U/SG200 dengan kapasiti penjerapannya lebih tinggi berbanding SG200 tanpa pemegunan,. Ini menjadikannya penjerap hijau yang ekonomi untuk penangkapan
CO2.
Kata kunci: Gel silika;
kolina klorida;
pelarut eutektik dalam; penangkapan karbon; penjerapan; urea
REFERENCES
Abu Tahari, M.N., Hakim, A., Wan Isahak,
W.N.R., Samad, W.Z. & Yarmo,
M.A. 2015. Adsorption of CO2 on Octadecylamine-
Impregnated on SiO2: Physical and chemical interaction studies.
Advanced Materials Research 1087: 137-141.
Balsamo,
M., Erto, A., Lancia, A., Totarella,
G., Montagnaro, F. & Turco, R.
2018. Post-combustion CO2 capture: On the potentiality of amino
acid ionic liquid as modifying agent of mesoporous solids. Fuel
218(April 2017): 155-161.
Creamer,
A.E. & Gao, B. 2015. Carbon Dioxide Capture: An Affective
Way to Combat Global Warming. New York: Springer Berlin
Heidelberg.
Dai,
Y., Van Spronsen, J., Witkamp,
G., Verpoorte, R. & Choi, Y.H.
2013. Ionic liquids and deep eutectic solvents in natural products
research: Mixtures of solids as extraction solvents. Journal
of Natural Product 76: 2162-2173.
Erto, A., Silvestre-albero, A., Silvestre-albero, J., Rodríguez-reinoso, F.,
Balsamo, M., Lancia, A. & Montagnaro,
F. 2015. Carbon-supported ionic liquids as innovative adsorbents
for CO2
separation from synthetic flue-gas. Journal
of Colloid and Interface Science 448: 41-50.
Gray,
M.L., Champagne, K.J., Fauth, D.,
Baltrus, J.P. & Pennline,
H. 2012. Performance of immobilized tertiary amine solid sorbents
for the capture of carbon dioxide. International Journal
of Greenhouse Gas Control 2(2008): 3-8.
Guo, X., Ding, L., Kanamori, K., Nakanishi,
K. & Yang, H. 2017. Functionalization of hierarchically
porous silica monoliths with polyethyleneimine
(PEI) for CO2
adsorption. Microporous and Mesoporous Materials
245: 51-57.
Hayyan, M., Abo-Hamad, A., AlSaadi,
M.A. & Hashim, M.A. 2015. Functionalization
of graphene using deep eutectic solvents. Nanoscale Research
Letters 10(1): 2-26.
Hu, J.,
Yang, X., Yu, J. & Dai, G. 2017. Carbon dioxide (CO2) absorption
and interfacial mass transfer across vertically confined free
liquid film-a numerical investigation. Chemical Engineering
& Processing: Process Intensification 111: 46-56.
Jon,
N., Abdullah, I. & Othaman, R.
2013. Effects of silica on the formation of epoxidised
natural rubber/polyvinyl chloride membrane. Sains
Malaysiana 42(4): 469-473.
Lee,
C.H., Hyeon, D.H., Jung, H., Chung,
W., Jo, D.H., Shin, D.K. & Kim, S.H. 2014. Effects of pore
structure and PEI impregnation on carbon dioxide adsorption
by ZSM-5 zeolites. Journal of Industrial and Engineering
Chemistry 23: 251-256.
Leron, R.B. & Li, M.H. 2013. Solubility of carbon dioxide in a choline
chloride-ethylene glycol based deep eutectic solvent. Thermochimica Acta 551:
14-19.
Leron, R.B., Caparanga, A. & Li, M.H. 2013.
Carbon dioxide solubility in a deep eutectic solvent based on
choline chloride and urea at T = 303.15-343.15K and moderate
pressures. Journal of the Taiwan Institute of Chemical Engineers
44(6): 879-885.
Marcus,
Y. 2018. Gas solubilities in deep
eutectic solvents. Monatshefte Fur Chemie
149(2): 211-217.
Marliza, T.S., Yarmo,
M.A., Hakim, A., Tahari, M.N.A., Hisham,
M.W.M. & Taufiq-Yap, Y.H. 2017.
CO2
capture on NiO supported
imidazolium-based ionic liquid. American
Institute of Physics 20008: 1-8.
Marwani, H.M. & Alsafrani,
A.E. 2013. New solid phase extractor based on ionic liquid functionalized
silica gel surface for selective separation and determination
of lanthanum. Journal of Analytical Science and Technology
4(1): 13.
Ramdin, M., De Loos, T.W. & Vlugt, T.J.H. 2012. State-of-the-art of CO2 capture
with ionic liquids. Industrial and Engineering Chemistry
Research 51: 8149-8177.
Rao,
S. & Riahi, K. 2006. The role
of non-CO2 greenhouse gases in climate change mitigation: Long-term
scenarios for the 21st century. Energy Journal 27: 177-200.
Sarmad, S., Mikkola,
J.P. & Ji, X. 2017. Carbon dioxide capture with ionic liquids
and deep eutectic solvents: A new generation of sorbents. ChemSusChem
10(2): 324-352.
Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. 2004. Thermal decomposition (pyrolysis) of urea
in an open reaction vessel. Thermochimica
Acta 424(1-2): 131-142.
Shi,
F., Zhang, Q., Li, D. & Deng, Y. 2005. Silica-gel-confined
ionic liquids: A new attempt for the development of supported
nanoliquid catalysis. Chemistry
- A European Journal 11(18): 5279-5288.
Sing,
S.W.K., Everett, D.H., Haul, R.A.W., Moscou,
L., Pierotti, R.A., Rouquerol, J. &
Siemieniewska, T. 1985. Reporting
physisorption data for gas/solid systems. Pure Applied
Chemistry 57: 603-619.
Vilarrasa-García, E., Cecilia, J.A., Santos,
S.M.L., Cavalcante, C.L., Jiménez-Jiménez,
J., Azevedo, D.C.S. & Rodríguez- Castellón,
E. 2014. CO2 adsorption on APTES functionalized mesocellular
foams obtained from mesoporous silicas.
Microporous and Mesoporous Materials 187: 125-134.
Wang,
K., Shang, H., Li, L., Yan, X., Yan, Z., Liu, C. & Zha,
Q. 2012. Efficient CO2 capture on low-cost silica gel modified
by polyethyleneimine. Journal of
Natural Gas Chemistry 21(3): 319-323.
Yu, B.,
Cong, H., Zhao, X.S. & Chen, Z. 2011. Carbon dioxide capture
by Dendrimer-modified silica nanoparticles. Adsorpt.
Sci. Technol. 29(8): 781-788.
Yusuf,
N.Y.M., Masdar, M.S., Isahak,
W.N.R.W. & Nordin, D. 2018. Impregnated
carbon- ionic liquid as innovative adsorbent for H2/CO2
separation from biohydrogen.
International Journal of Hydrogen Energy 44(6): 3414-3424.
Zhang,
J., Ma, Y., Shi, F., Liu, L. & Deng, Y. 2009. Room temperature
ionic liquids as templates in the synthesis of mesoporous silica
via a sol-gel method. Microporous and Mesoporous Materials
119(1-3): 97-103.
Zhang,
Y., Ji, X. & Lu, X. 2015. Choline-based deep eutectic solvents
for mitigating carbon dioxide emissions. Novel Materials
for Carbon Dioxide Mitigation Technology, edited by Shi,
F. & Morreale, B. New York: Elsevier
B.V. pp. 87-116.
Zhu,
J., He, B., Huang, J., Li, C. & Ren, T. 2018. Effect of
immobilization methods and the pore structure on CO2 separation performance in silica-supported
ionic liquids. Microporous and Mesoporous Materials 260(October
2017): 190-200.
Zhu,
J., Xin, F., Huang, J., Dong, X. & Liu, H. 2014. Adsorption
and diffusivity of CO2 in phosphonium ionic liquid
modified silica. Chemical Engineering Journal 246: 79-87.
*Corresponding author; email: rizafizah@ukm.edu.my