Sains Malaysiana 48(5)(2019): 1111–1119

http://dx.doi.org/10.17576/jsm-2019-4805-20

 

Subminiature Panel (SMA-P) Coaxial Sensor for the Determination of Moisture Content of Mango cv. Chok Anan

(Penderia Sepaksi Panel Subminiatur (SMA-P) untuk Penentuan Kandungan Lembapan Mangga cv. Chok Anan)

 

NORADIRA SUHAIME1, MASNIZA SAIRI2, ZULKIFLY ABBAS1*, NUR BIHA MOHAMED NAFIS1, ZAULIA OTHMAN3, AMIR SYARIFFUDDEEN MHD ADNAN2, AMIR REDZUAN SHAMSULKAMAL2 & TEN SENG TEIK2

 

1Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Engineering Research Center, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Industrial Crop Research Center, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 30 November 2018/Accepted: 11 March 2019

 

ABSTRACT

The research describes the development of a simple, cheap and efficient open-ended coaxial sensor for the determination of moisture content of Chok Anan mango during fruit ripening from week 5 to week 17. The sensor was a modification of a standard subminiature panel (SMA-P). The finite element method was used to calculate the numerical values of the reflection coefficient. The reflection coefficient of the sensor was measured using a Microwave Network Analyzer in the frequency range from 1 to 4 GHz. The actual moisture content was obtained using standard oven drying method. A calibration equation was obtained to predict moisture content from the measured reflection coefficient at 1 GHz with accuracy within 1.5%. The results indicate that the amount of m.c. in Chok Anan mango can be determined with excellent accuracy using a SMA-P coaxial sensor as an OEC sensor.

 

Keywords: Finite element method; moisture content; open-ended coaxial sensor; reflection coefficient; SMA-P

ABSTRAK

Kajian ini menghuraikan pembangunan penderia sepaksi hujung terbuka yang mudah, murah dan cekap dalam menentukan kandungan lembapan mangga Chok Anan sepanjang kematangan buah dari minggu ke 5 hingga minggu 17. Penderia tersebut adalah pengubahsuaian daripada panel subminiatur (SMA-P) piawai. Kaedah Unsur Terhingga digunakan untuk menghitung nilai berangka pekali pantulan. Pekali pantulan untuk penderia diukur dengan menggunakan Microwave Network Analyzer dalam julat frekuensi daripada 1 hingga 4 GHz. Kandungan lembapan sebenar diperoleh menggunakan kaedah piawai pengeringan ketuhar. Persamaan penentukuran diperoleh untuk meramalkan kandungan lembapan daripada pengukuran pekali pantulan pada 1 GHz dengan ketepatan yang diperoleh adalah 1.5%. Keputusan menunjukkan bahawa jumlah m.c. dalam mangga Chok Anan boleh ditentukan dengan ketepatan yang sangat baik menggunakan penderia sepaksi SMA-P sebagai penderia OEC.

 

Kata kunci: Kaedah unsur terhingga; kandungan lembapan; penderia sepaksi hujung-terbuka; pekali refleksi; SMA-P

REFERENCES

Abidin, M.I.Z. 1991. Pengeluaran Buah-buahan. Kuala Lumpur: Dewan Bahasa dan Pustaka.

Abbas, Z., You, K.Y., Shaari, A.H., Zakaria, A. & Hassan, J. 2005. Fast and accurate technique for determination of moisture content in oil palm fruits using open-ended coaxial sensor. Japanese Journal of Applied Physics 44: 5272-5274.

Adair, E.R. & Petersen, R.C. 2002. Biological effects of radio-frequency/microwave radiation. IEEE Transactions on Microwave Theory and Techniques 50: 953-962.

Ahn, J.Y., Kil, D.Y., Kong, C. & Kim, B.G. 2014. Comparison of oven-drying methods for determination of m.c. in feed ingredients. Asian-Australasian Journal of Animal Sciences 27: 1615-1622.

Ansarudin, F., Abbas, Z., Hassan, J., Yahaya, N.Z. & Ismail, M.A. 2012. A simple insulated monopole sensor technique for determination of moisture content in Hevea rubber latex. Measurement Science Review 12: 249-254.

AOAC. 2000. Official Methods of Analysis of the Association of Official Analytical Chemists. 17th edition. Arlington VA: AOAC International.

Auriemma, G., Del Gaudio, P., Barba, A.A., d’Amore, M. & Aquino, R.P. 2011. A combined technique based on prilling and microwave assisted treatments for the production of ketoprofen controlled release dosage forms. International Journal of Pharmaceutics 415: 196-205.

Comsol Multiphysics. 2006. The COMSOL Multiphysics User’s Guide. USA: COMSOL AB.

DOA. 2017. Statistik Tanaman (Sub-Sektor Tanaman Makanan). Malaysia: DOA.

Gallina, A., Stocco, N. & Mutinelli, F. 2010. Karl Fischer titration to determine moisture in honey: A new simplified approach. Food Control 21: 942-944.

Grant, J.P., Clarke, R.N., Symm, G.T. & Spyrou, N.M. 1989. A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements. Journal of Physics E Scientific Instruments 22: 757.

Jha, S.N., Narsaiah, K., Basediya, A.L., Sharma, R., Jaiswal, P., Kumar, R. & Bhardwaj, R. 2011. Measurement techniques and application of electrical properties for non-destructive quality evaluation of foods-A review. Journal of Food Science and Technology 48: 387-411.

Kandala, C.V., Butts, C.L. & Nelson, S.O. 2007. Capacitance sensor for non-destructive measurement of moisture content in nuts and grain. IEEE Transactions on Instrumentation and Measurement 56: 1809-1813.

Kaatze, U., Kupfer, K. & Hübner, C. 2007. Microwave moisture measurements. Measurement Science and Technology 10.1088/0957-0233/18/4/E01.

King, R.W.P., Lee, K.M., Mishra, S.R. & Smith, G.S. 1973. Insulated linear antenna: Theory and experiment. Journal Applied Physics 45: 188-1697.

Kupfer, K. 2005. Electromagnetic Aquametry. Germany: Springer.

Marsland, T.P. & Evans, S. 1987. Dielectric measurement with an open ended coaxial probe. IEE Proceeding H. 134(4): 341-349.

Metaxas, A.C. & Meredith, R.J. 1983. Industrial Microwave Heating. London, UK: Peter Peregrinus Ltd.

Michael, D., Mingos, P. & Baghurst, D.R. 1991. Application of microwave dielectric heating effects to synthetics problems in chemistry. Chemical Society Reviews 20: 1-47.

Nelson, S., Forbus, W.J. & Lawrence, K. 1994. Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz. Journal of Microwave Power and Electromagnetic Energy 29: 81-93.

Norimi, A.M., Abbas, Z., Jusoh, A. & Ismail, M.A. 2012. Determination of m.c. of Maize Kernel (Zea mays L.) by reflectance measurement at wavelengths 300 nm to 800 nm using optical technique. PIERS Proceedings. pp. 1072-1074.

Nurjaya, S. & Wong, T.W. 2005. Effects of microwave on drug release properties of matrices of pectin. Carbohydrate Polymer 62: 245-257.

Nielsen, S.S. 2010. Food Analysis. 4th edition. USA: Springer.

Nyfors, E. & Vainikainen, P. 1989. Industrial Microwave Sensors. Norwood, MA: Artech House.

Poumaropoulos, C. & Misra, D. 1993. A study on the coaxial aperture electromagnetic sensor and its application in material characterization. IEEE Instrumentation and Measurement Technology Conference. pp. 52-55.

Pyper, J.W., Buettner, H.M., Cerjan, C.J., Hallam, J.S. & King, R.J. 1985. The measurement of bound and free moisture in organic materials by microwave methods. Proceedings of the International Symposium on Moisture & Humidity. pp. 15-18.

Ragni, L., Gradari, P., Berardinelli, A., Giunchi, A. & Guarnieri, A. 2006. Predicting quality parameters of shell eggs using a simple technique based on the dielectric properties. Biosystems Engineering 94: 255-262.

Serdyuk, V.M. 2008. Dielectric study of bound water in grain at radio and microwave frequencies. Progress in Electromagnetics Research, PIER 84: 379-406.

Schubert, H. & Regier, M. 2005. The Microwave Processing of Foods. Boca Raton: CRC Press Woodhead Publishing.

Soltani, M., Alimardani, R. & Omid, M. 2011. Use of dielectric properties in quality measurement of agricultural products. Nature and Science 9: 57-61.

Sosa-Morales, M.E., Tiwari, G., Wang, S., Tang, J., Gancia, H.S. & Lopez-Malo, A. 2009. Dielectric heating as a potential post-harvest treatment of disinfesting mangoes, Part I: Relation between dielectric properties and ripening. Biosystems Engineering 103: 297-303.

Suhaime, N., Sairi, M., Abbas, Z., Mohamed Nafis, N.B., Othman, Z., Mhd Adnan, A.S., Shamsulkamal, A.R., Paiman, S. & Mohamed, T.N. 2018. Microwave technique for moisture content and pH determination during pre-harvest of mango cv. Chok Anan. Sains Malaysiana 47(7): 1571-1578.

Tang, J. 2005. Dielectric properties of foods. In The Microwave Processing of Foods, edited by Schulber, H. & Regier, M. Boca Raton: CRC Press. pp. 22-40.

Wang, S., Tang, J., Johnson, J.A., Mitcham, E., Hansen, J.D., Hallman, G., Drake, S.R. & Wang, Y. 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering 85: 201-212.

Wong, T.W., Chan, L.W., Kho, S.B. & Heng, P.W.S. 2002. Design of controlled release solid dosage forms of alginate and chitosan using microwave. Journal of Control Release 84: 99-114.

Yahaya, N.Z., Abbas, Z., Ibrahim, N.M., Hafizi, M.H.M. & Yahaya, M.Z. 2014a. Permittivity models for determination of moisture content in hevea rubber latex. International Journal of Agricultural and Biological Engineering 7: 48-54.

Yahaya, N.Z., Abbas, Z., Ali, B.M., Ismail, A. & Ansarudin, F. 2014b. Intercomparison of methods for determination of resonant frequency shift of a microstrip patch antenna loaded with Hevea rubber latex. Journal of Sensors 656972: 1-9.

Yeow, Y.K., Abbas, Z. & Khalid, K. 2010. Application of microwave moisture sensor for determination of oil palm fruit ripeness. Measurement Science Review 10: 7-14.

Zainuddin, M.F., Abbas, Z., Hafizi, M.H.M., Jusoh, M.A. & Hj Razali, M.H. 2013. Monopole antenna technique for determining moisture content in the Dioscorea hispida tubers. Australian Journal of Crop Science 7: 1-6.

 

*Corresponding author; email: za@upm.edu.my

 

 

 

 

previous