Sains Malaysiana 48(5)(2019): 965–974
http://dx.doi.org/10.17576/jsm-2019-4805-04
Yield Enhancement of Recombinant α-Amylases
in Bacillus amyloliquefaciens by
ARTP Mutagenesis-Screening and Medium Optimization
(Hasil Peningkatan Rekombinan α-Amilase dalam Bacillus amyloliquefaciens ARTP
Mutagenesis-Penyaringan dan Pengoptimuman Sederhana)
TING-LIANG
XU1,
JING
PENG1,
YU-LING
ZHU1,
SU
LI1,
KAI-YAN
ZHOU1,
HAI-NA
CHENG1,
SHI-ZHE
TANG1
& HONG-BO ZHOU1,2*
1School of Minerals
Processing and Bioengineering, Central South University, 410083
No.932 South Lushan Road, Changsha, China
2Key Laboratory of
Biometallurgy of Ministry of Education, Central South University,
410083 No.932 South Lushan Road, Changsha, China
Received:
7 May 2018/Accepted: 20 March 2019
ABSTRACT
α-Amylase is the most extensively
applied enzyme in industry. There is an urgent need for improvement
on the yield of α-amylases currently. Herein, a strategy
which combined Atmospheric and Room Temperature Plasma (ARTP)
mutagenesis tool for construction of mutant library of Bacillus
amyloliquefaciens with a 24-well plates screening technique
was adopted to improve the yield of recombinant Bacillus
amyloliquefaciens α-amylases (BAA).
A mutant strain named B. amyloliquefaciens
ZN
mut-7# was obtained, and the activity of BAA produced by this mutant strain
was 86.92% higher than that of the original strain. B. amyloliquefaciens ZN mut-7# has an unchanged
BAA
gene and genetic stability. This successful application
proved that ARTP can
be applied to the genetically engineering strains that contain
recombinant plasmid. Furthermore, response surface methodology
offers an achievable and efficient strategy to optimize the
composition of medium used to generate BAA
in B. amyloliquefaciens
ZN mut-7#.
A 1.28-fold increase had been obtained compared to the production
of non-optimized fermentation medium. This study demonstrates
that ARTP mutagenesis
and medium optimization are efficient and feasible methods for
increasing recombinant enzyme production in the genetically
engineering strains.
Keywords: ARTP mutagenesis;
Bacillus amyloliquefaciens α-amylases;
medium optimization; response surface methodology
ABSTRAK
α-Amilase
adalah enzim
yang diaplikasi secara meluas dalam industri.
Terdapat keperluan
segera untuk menambah
baik hasil
daripada α-amilase pada masa ini. Di sini, satu strategi
yang menggabungkan alat
mutagenesis atmosfera dan
plasma suhu bilik
(ARTP)
untuk pembinaan
perpustakaan mutan Bacillus
amyloliquefaciens dengan
teknik saringan
plat 24-telaga yang telah diguna
pakai untuk
meningkatkan hasil recombinan Bacillus amyloliquefaciens
α-amylases (BAA). Terikan
mutan yang dipanggil
B. amyloliquefaciens ZN #
mut-7 telah diperoleh
dan aktiviti BAA yang
dihasilkan oleh
terikan mutan ini
adalah 86.92% lebih
tinggi daripada terikan asal. B. amyloliquefaciens ZN mut-7 # mempunyai gen BAA tidak
berubah dan
kestabilan genetik. Aplikasi ini berjaya
membuktikan bahawa
ARTP
boleh digunakan
untuk kejuruteraan
genetik terikan yang mengandungi plasmid recombinan.
Selain itu, kaedah
gerak balas
permukaan menawarkan strategi yang boleh dicapai dan cekap
untuk mengoptimumkan
komposisi medium yang digunakan
untuk menjana BAA dalam B. amyloliquefaciens ZN
# mut-7. Peningkatan
sebanyak 1.28-lipatan telah
diperoleh berbanding
pengeluaran sederhana penapaian tidak optimum. Kajian ini menunjukkan bahawa mutagenesis ARTP dan
pengoptimuman sederhana
adalah kaedah yang cekap dan boleh
dilaksanakan untuk
meningkatkan penghasilan enzim recombinan dalam kejuruteraan genetic terikan.
Kata kunci: Bacillus amyloliquefaciens α-amilase;
mutagenesis ARTP; pengoptimuman
sederhana; kaedah
gerak balas permukaan
REFERENCES
Cao,
S., Zhou, X., Jin, W., Wang, F., Tu,
R., Han, S., Chen, H., Chen, C., Xie,
G. & Ma, F. 2017. Improving of lipid productivity of the
oleaginous microalgae Chlorella pyrenoidosa
via atmospheric and room temperature plasma (ARTP). Bioresource
Technology 244: 1400-1406.
Fan,
R. 2014. Heterologous expression of α-amylase in Bacillus
licheniformis with genetic engineering modification. Master’s
thesis. Jiangsu: Jiangnan University (Unpublished).
Fuwa, H. 1954. A new method for micro determination of amylase activity
by the use of amylose as a substrate. Journal of Biochemistry
41(5): 583-603.
Gao,
H., Liu, M., Liu, J., Dai, H., Zhou, X., Liu, X., Zhuo,
Y., Zhang, W. & Zhang, L. 2009. Medium optimization for
the production of avermectin B1a by Streptomyces avermitilis
14-12A using response surface methodology. Bioresource
Technology 100(17): 4012-4016.
Guo, T., Tang, Y., Xi, Y., He, A., Sun, B., Wu, H., Liang, D., Jiang,
M. & Ouyang, P. 2011. Clostridium beijerinckii
mutant obtained by atmospheric pressure glow discharge producing
high proportions of butanol and solvent yields. Biotechnology
Letters 33(12): 2379-2383.
Jiang,
Y., Shang, Y., Li, H., Zhang, C., Pan, J., Bai, Y., Li, C. &
Xu, J. 2017. Enhancing transglutaminase production of Streptomyces
mobaraensis by iterative mutagenesis
breeding with atmospheric and room-temperature plasma (ARTP).
Bioresources and Bioprocessing
4(1): 37.
Khuri, A. 2006. Response Surface Methodology and Related Topics.
1st ed. Hacenksack: World Scientific.
Laemmli, U.K. 1970. Cleavage of structural proteins
during the assembly of the head of bacteriophage T4. Nature
227(5259): 680-685.
Li, G.,
Li, H., Wang, L., Wang, S., Zhao, H., Sun, W., Xing, X. &
Bao, C. 2008. Genetic effects of radio-frequency, atmospheric-pressure
glow discharges with helium. Applied Physics Letters 92(22):
221504.
Li, G.
2016. Identification of a strain of Bacillus amyloliquefaciens
and cloning and expression of its mesophilic α-amylase
gene. Master’s thesis. Changsha: Central South University (Unpublished).
Li, Z.
2009. Breeding of Bacillus amyloliquefaciens
and study on mesophilic α-amylase production. Master’s
thesis. Jiangsu: Jiangnan University (Unpublished).
Liu,
X., Yu, X., Lv, J., Xu, J., Xia, J.,
Wu, Z., Zhang, T. & Deng, Y. 2017. A cost-effective process
for the coproduction of erythritol and lipase with Yarrowia
lipolytica M53 from waste cooking
oil. Food and Bioproducts Processing
103: 86-94.
Lu, Y.,
Wang, L., Ma, K., Li, G., Zhang, C., Zhao, H., Lai, Q., Li,
H. & Xing, X. 2011. Characteristics of hydrogen production
of an Enterobacter aerogenes
mutant generated by a new atmospheric and room temperature
plasma (ARTP). Biochemical Engineering Journal 55(1):
17-22.
Ma, Y., Shen, W., Chen, X., Liu, L., Zhou, Z., Xu, F. & Yang,
H. 2016. Significantly enhancing recombinant alkaline amylase
production in Bacillus subtilis by integration of a novel
mutagenesis-screening strategy with systems-level fermentation
optimization. Journal of Biological Engineering 10(1):
13.
Ma, Y.,
Yang, H., Chen, X., Sun, B., Du, G., Zhou, Z., Song, J., Fan,
Y. & Shen, W. 2015. Significantly improving the yield of
recombinant proteins in Bacillus subtilis by a novel
powerful mutagenesis tool (ARTP): Alkaline α-amylase as
a case study. Protein Expression and Purification 114:
82-88.
Puri, S., Beg, Q.K. &
Gupta, R. 2002. Optimization of alkaline protease production
from Bacillus sp. by response surface methodology. Current
Microbiology 44(4): 286-290.
Rivera, M., Lopez-Munguia, A., Soberon, X. & Saab-Rincon,
G. 2003. Alpha-amylase from Bacillus licheniformis
mutants near to the catalytic site: Effects on hydrolytic
and transglycosylation activity. Protein Engineering 16(7):
505-514.
Souza, P.M. &
Magalhaes, P.D.E. 2010. Application of microbial α-amylase
in industry-A review. Brazilian Journal of Microbiology 41(4):
850-861.
Tan, Y., Fang, M.,
Jin, L., Zhang, C., Li, H. & Xing,
X. 2015. Culture characteristics of the atmospheric and room
temperature plasma-mutated Spirulina platensis mutants
in CO2 aeration culture system for biomass
production. Journal of Bioscience and Bioengineering 120(4):
438-443.
Vijayaraghavan, P., Remya, C.S. & Prakash, V.S.G. 2011. Production of α-amylase
by using agricultural by-products in solid state fermentation.
Research Journal of Microbiology 6(4): 366-375.
Wang, L., Huang,
Z., Li, G., Zhao, H., Xing, X., Sun, W., Li, H., Gou, Z. &
Bao, C. 2010. Novel mutation breeding method for Streptomyces
avermitilis using an atmospheric
pressure glow discharge plasma. Journal of Applied Microbiology
108(3): 851-858.
Wang, X., Liu, W.
& Qian, J. 2016. A screening of medium-temperature α-amylase
high-yield strains by ARTP and its fermentation conditions optimization.
China Brewing 35(1): 78-81.
Wu, H., Tian, X.,
Dong, Z., Zhang, Y., Huang, L., Liu, X., Jin,
P., Lu, F. & Wang, Z. 2017. Engineering of Bacillus amyloliquefaciens
α-amylase with improved calcium independence and catalytic
efficiency by error-prone PCR. Starch-Stärke
77: 1700175.
Xu, F., Jin, H., Li, H., Tao, L., Wang, J., Lv,
J. & Chen, S. 2012. Genome shuffling of Trichoderma
viride for enhanced cellulase
production. Annals of Microbiology 62(2): 509-515.
Yang, L., Wang, Z.,
Xue, B., Liu, H., Ma, J. & Zheng,
Y. 2010. Clonging of antagonistic protein TasA
gene in Bacillus amyloliquefaciens
YN-1 and its prokaryotic expression. Genomics and Applied
Biology 29(5): 823-828.
Zhang, H., Lamping,
S.R., Pickering, S.C.R., Lye, G.J. & Shamlou,
P. 2008. Engineering characterisation
of a single well from 24-well and 96-well microtitre
plates. Biochemical Engineering Journal 40(1): 138-149.
Zhang, L., Guo, L. & Fu, L. 2012. Study on breeding of mutants of
high-yield acetic acid bacteria by ultraviolet radiation. Xinjiang
Agricultural Sciences 49(6): 1120-1126.
Zhang, X., Zhang,
C., Zhou, Q., Zhang, X., Wang, L., Chang, H., Li, H., Oda,
Y. & Xing, X. 2015. Quantitative evaluation of DNA damage
and mutation rate by atmospheric and room-temperature plasma
(ARTP) and conventional mutagenesis. Applied Microbiology
and Biotechnology 99(13): 5639-5646.
Zhang, X., Zhang,
X., Li, H., Wang, L., Zhang, C., Xing, X. & Bao,
C. 2014. Atmospheric and room temperature plasma (ARTP) as a
new powerful mutagenesis tool. Applied Microbiology and Biotechnology
98(12): 5387-5396.
Zhang, X. & Pan,
X. 2009. Effects of mutagensis modes
on breeding of Rhodotorula
NZ-01. Food and Fermentation Industries 35(12): 15-18.
Zong, H., Zhan, Y., Li,
X., Peng, L., Feng, F. & Li, D. 2012. A new mutation breeding
method for Streptomyces albulus
by an atmospheric and room temperature plasma. African
Journal of Microbiology Research 6(13): 3154-3158.
*Corresponding author; email: zhouhb@csu.edu.cn