Sains Malaysiana 48(5)(2019):
983–990
http://dx.doi.org/10.17576/jsm-2019-4805-06
Transformation of Melinjo Seed Micropowders
into Nanopowders Enhances Extractability of Phenolic Compounds
and Tyrosinase Inhibitory Activity
(Transformasi Serbuk Mikro Biji
Melinjo kepada
Serbuk Nano Meningkatkan Pengekstrakan Sebatian Fenolik dan Merencat
Aktiviti Tirosinase)
VIENNA SARASWATY1,2,
NI
WAYAN
WULAN
PRAWERTI
SUPARTA1,
HENRY
SETIYANTO3,
HENI
RACHMAWATI1
& I KETUT ADNYANA1*
1School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, Indonesia
2Research Unit for Clean Technology,
Indonesian Institute of Sciences, Jalan
Cisitu Sangkuriang Gd. 50, Bandung,
Indonesia
3Analytical Chemistry Research Group,
Institut Teknologi
Bandung, Jalan Ganesha
no. 10, Bandung, Indonesia
Received: 20 September 2018/Accepted:
20 March 2019
ABSTRACT
Melinjo (Gnetum gnemon L.)
seed powder extract exhibited antioxidant and tyrosinase
inhibitory activity, thus showing potential as a dietary supplement
or nutraceutical to prevent aging or hyperpigmentation. Previously,
we found that particle size plays important role in extraction
of bioactive compounds and influences their bioactivity. Thus,
it is important to determine a certain particle size for the
extraction process. In this study, we investigated the effects
of transformation of melinjo
seed micropowders into nanopowders by
nanomilling using a high-energy ball mill (shaker mill). The
effects of melinjo seed powders
particle size on its physicochemical characteristics, extraction
efficiency and release of phenolic compounds, as well as tyrosinase
inhibitory activity were observed. The nanomilling
successfully transformed melinjo
seed micropowders into nanopowders
within 90 min of milling. Particle size analysis showed that
melinjo seed nanopowders were produced with a mean particle diameter of
~675 nm (PI 0.270). Scanning electron microscope (SEM)
images of the melinjo seed
nanopowders obviously showed a smaller
particle size, a smooth surface, amorphous shapes and irregular
edges. The melinjo seed nanopowders at mean particle diameter of ~675 nm exhibited
the highest extraction yield and phenolic compounds release.
As a consequence, the tyrosinase inhibitory
activity of the melinjo seed nanopowders was
4.5 times higher than that of the melinjo
seed micropowders. Based on the results obtained in this study,
transformation of melinjo seed
micropowders into nanopowders
is very promising for improving the efficacy of melinjo
seed as tyrosinase inhibitor.
Keywords: Extractability; melinjo; nanopowders;
tyrosinase
ABSTRAK
Ekstrak serbuk biji Melinjo
(Gnetum gnemon L.)
mengeluarkan antioksidan dan merencat aktiviti
tirosinase sekali
gus menunjukkan potensi sebagai makanan tambahan atau nutraseutik untuk mencegah
penuaan atau hiperpigmentasi.
Sebelum ini,
kami mendapati bahawa saiz zarah memainkan
peranan penting
dalam pengekstrakan sebatian bioaktif dan mempengaruhi kemujaraban mereka. Oleh itu, adalah
penting untuk
menentukan saiz zarah tertentu untuk proses pengekstrakan. Dalam kajian ini,
kami mengkaji kesan
transformasi serbuk mikro biji melinjo
kepada serbuk
nano oleh pengisaran
nano yang menggunakan
sebuah kilang pengisar
bola tenaga tinggi
(kilang penggoncang). Kesan saiz zarah
serbuk biji
melinjo ke atas
ciri-ciri fizikokimia,
kecekapan pengekstrakan dan pengeluaran sebatian berfenol, serta merencat aktiviti tirosinase diperhatikan. Pengisaran nano yang berjaya berubah serbuk mikro biji melinjo
menjadi serbuk
nano dalam 90 min masa pengilangan. Analisis saiz zarah menunjukkan
bahawa serbuk
nano biji melinjo
dihasilkan dengan
diameter zarah min ~ 675 nm (PI 0.270). Imej-imej
mikroskop elektron
(SEM)
serbuk nano
biji melinjo jelas
menunjukkan saiz
zarah yang lebih kecil, bentuk amorfus,
permukaan licin
dan tepi tidak
teratur. Serbuk
nano biji melinjo
pada diameter zarah
min ~ 675 nm menunjukkan hasil
perahan yang tertinggi dan sebatian fenol
lepas. Akibatnya,
aktiviti merencat tirosinase serbuk nano biji melinjo
adalah sebanyak
4.5 kali lebih tinggi daripada
serbuk mikro
biji melinjo. Berdasarkan
keputusan yang diperoleh
dalam kajian ini,
transformasi serbuk
mikro biji melinjo
kepada serbuk
nano sangat berpotensi
untuk memperbaiki
keberkesanan biji melinjo sebagai perencat tirosinase.
Kata kunci: Melinjo;
pengekstrakan; serbuk
nano; tirosinase
REFERENCES
Altemimi, A., Lakhssassi, N., Baharlouei, A.,
Watson, D.G. & Lightfoot, D.A. 2017. Phytochemicals: Extraction,
isolation, and identification of bioactive compounds from plant
extracts. Plants 6: 42.
Barua, C.C., Haloi, P. & Barua, I.C. 2015.
Gnetum gnemon
Linn.: A comprehensive review on its biological, pharmacological
and pharmacognostical potentials. International Journal of
Pharmacognosy and Phytochemical Research 7(3): 531-539.
Borhan, M.Z., Ahmad, R.,
Rusop, M. & Abdullah, S. 2013a.
Green extraction: Enhanced extraction yield of asiatic
acid from Centella asiatica (L.)
nanopowders. Journal of Applied
Chemistry 2013: 1-7.
Borhan, M.Z., Ahmad, R.,
Rusop, M. & Abdullah, S. 2013b.
Optimization of ball milling parameters to produce Centella
asiatica herbal nanopowders.
Journal of Nanostructure in Chemistry 3: 79.
Brinkmann, A., Chen, M., Couillard, M., Jakubek, Z.J., Leng, T. & Johnston, L.J. 2016. Correlating cellulose
nanocrystal particle size and surface area. Langmuir 32(24):
6105-6114.
Couteau, C. & Coiffard, L. 2016. Overview of skin whitening agents: Drugs
and cosmetic products. Cosmetics 3: 27.
D’Mello, S.A., Finlay, G.J.,
Baguley, B.C. & Askarian-
Amiri, M.E. 2016. Signaling pathways
in melanogenesis. International Journal of Molecular Sciences
17(7): 1144.
Deng, X., Huang,
Z., Wang, W. & Davé, R.N. 2016.
Investigation of nanoparticle agglomerates properties using
monte carlo simulations. Advanced Powder Technology 27(5):
1971-1979.
Gao, M.W. & Forssberg, E. 1993. A study on the effect of parameters in
stirred ball milling. International Journal of Mineral Processing
37(1-2): 45-59.
Hartley, P.A., Parfitt, G.D. & Pollack, B. 1985. The role of the Van
Der Waals force in the agglomeration of powders containing
submicron particles. Powder Technology 42(1): 35-46.
Huang, X., Huang,
X., Gong, Y., Xiao, H., McClements,
D.J. & Hu, K. 2016. Enhancement of curcumin water dispersibility
and antioxidant activity using core-shell protein-polysaccharide
nanoparticles. Food Research International 87: 1-9.
Ikeda, E., Ikeda,
Y., Wang, Y., Fine, N., Sheikh, Z., Viniegra,
A., Barzilay, O., Ganss, B., Tenenbaum, H.C. & Glogauer,
M. 2018. Resveratrol derivative-rich melinjo
seed extract induces healing in a murine model of established
periodontitis. Journal of Periodontology 89(5): 586-595.
Kato, E., Tokunaga,
Y. & Sakan, F. 2009. Stilbenoids isolated from the seeds of melinjo
(Gnetum gnemon
L.) and their biological activity. Journal of Agricultural
and Food Chemistry 57(6): 2544-2549.
Kuziora, P., Wyszyńska,
M., Polanski, M. & Bystrzycki,
J. 2014. Why the ball to powder ratio (BPR) is insufficient
for describing the mechanical ball milling process. International
Journal of Hydrogen Energy 39(18): 9883-9887.
Li, M., Azad, M., Davé, R. & Bilgili, E. 2016.
Nanomilling of drugs for bioavailability enhancement: A holistic
formulation-process perspective. Pharmaceutics 8(2):
17.
Loh, Z.H., Samanta,
A.K. & Heng, P.W.A. 2014. Overview
of milling techniques for improving the solubility of poorly
water-soluble drugs. Asian Journal of Pharmaceutical Sciences
10(4): 255-274.
Namdari, M., Eatemadi,
A., Soleimaninejad, M. & Hammed,
A.T. 2017. A brief review on the application of nanoparticle
enclosed herbal medicine for the treatment of infective endocarditis.
Biomedicine & Pharmacotherapy 87: 321-331.
Ohguchi, K., Tanaka, T., Iliya, I., Ito, T., Iinuma, M.,
Matsumoto, K., Akao, Y. & Nozawa,
Y. 2003. Gnetol as a potent tyrosinase
inhibitor from genus gnetum. Bioscience,
Biotechnology, and Biochemistry 67(3): 663-665.
Onodera, T., Kuriyama,
I., Andoh, T., Ichikawa, H., Sakamoto,
Y., Lee-Hiraiwa, E. & Mizushina, Y.
2015. Influence of particle size on the in vitro and
in vivo anti-inflammatory and anti-allergic activities
of a curcumin lipid nanoemulsion.
International Journal of Molecular Medicine 35(6): 1720-
1728.
Peltonen, L. & Hirvonen,
J. 2010. Pharmaceutical nanocrystals by nanomilling:
Critical process parameters, particle fracturing and stabilization
methods. Journal of Pharmacy and Pharmacology 62(11):
1569-1579.
Rasmussen, J.W., Matinez, E., Louka, P. & Wingett, D.G. 2010. Zinc oxide nanoparticles for selective
destruction of tumor cells and potential for drug delivery applications.
Journal of Expert Opinion on Drug Delivery 7(9): 1063-1077.
Robinson, K., Mock, C. & Liang,
D. 2015. Pre-formulation studies of resveratrol. Drug Development
and Industrial Pharmacy 41(9): 1464-1469.
Saleh, I.A., Kamal, S.A., Shams, K.A.,
Abdel-Azim, N.S., Aboutabl, E.A. &
Hammouda, F.Z. 2015. Effect of particle size on total extraction
yield and silymarin content of Silybum marianum L.
seeds. Research Journal of Pharmaceutical, Biological and
Chemical Sciences 6(2): 803-809.
Saraswaty, V., Adnyana,
I.K., Pudjiraharti, S., Mozef,
T., Insanu, M., Kurniati,
N.F. & Rachmawati, H. 2017a. Fractionation
using adsorptive macroporous resin
HPD-600 enhances antioxidant activity of Gnetum
gnemon L. seed hard shell extract. Journal of Food
Science and Technology 54(10): 3349-3357.
Saraswaty, V., Risdian,
C., Primadona, I., Andriyani,
R., Andayani, D.G.S. & Mozef,
T. 2017b. Pineapple peel wastes as a potential source of antioxidant
compounds. In IOP Conference Series: Earth and Environmental
Science. Volume 60. https:// iopscience.iop.org/articles/10.1088/1755-1315/60/1/012013/
pdf. Accessed on 27 April 2018.
Sung, J.J., Luo, D., Wu, J.C., Ching, J., Chan, F.K., Lau, J.Y., Mack, S., Ducharme, R., Surti, V.C., Okolo, P.I., Canto, M.I., Kallo,
A.N. & Giday, S.A. 2010. S1575:
Nanopowders are highly effective in achieving hemostasis in
severe peptic ulcer bleeding: An interim report of a prospective
human trial. Gastrointestinal Endoscopy 71(5): AB198.
Teixeira, R.S., Rocha, P.R., Polonini, H.C., Brandão, M.A.F.,
Chaves, M.G.A.M. & Raposo, N.R.B.
2012. Mushroom tyrosinase inhibitory activity and major fatty acid constituents
of amazonian native flora oils. Brazilian
Journal of Pharmaceutical Sciences 48(3): 399-404.
Tian, Y., Wang, X., Xi, R., Pan, W.,
Jiang, S., Li, Z., Zhao, Y., Gao, G. & Liu, D. 2014. Enhanced
antitumor activity of realgar mediated
by milling it to nanosize. International Journal of Nanomedicine
9(1): 745-757.
Wank, A. & Wielage,
B. 2003. High energy ball milling - A promising route for production
of tailored thermal spray consumables. Conference on Modern
Wear and Corrosion Resistant Coatings Obtained by Thermal Spraying,
Warsaw, P. November 20th- 21st, 2003. https://www.gtv-mbh.com/_old/
gtv-mbh-englisch/www.gtv-mbh.de/cms/upload/
publikat/ Wank/
english/2003_05_eng.pdf.
Yanagihara, M., Yoshimatsu,
M., Inoue, A., Kanno, T., Tatefuji,
T. & Hashimoto, K. 2012. Inhibitory effect of gnetin
C, a resveratrol dimer from melinjo
(Gnetum gnemon), on
tyrosinase activity and melanin biosynthesis. Biological
& Pharmaceutical Bulletin 35(6): 993-996.
Yen, F.L., Wu, T.H., Tzeng, C.W., Lin, L.T. & Lin, C.C. 2010. Curcumin nanoparticles
improve the physicochemical properties of curcumin and effectively
enhance its antioxidant and antihepatoma
activities. Journal of Agricultural and Food Chemistry 58(12):
7376-7382.
Yoneshiro, T., Kaede,
R., Nagaya, K., Saito, M., Aoyama, J., Elfeky,
M., Okamatsu-Ogura, Y., Kimura, K. & Terao,
A. 2018. Melinjo (Gnetum
gnemon L.) seed extract induces
uncoupling protein 1 expression in brown fat and protects mice
against diet-induced obesity, inflammation, and insulin resistance.
Nutrition Research 58: 17-25.
*Corresponding author;
email: ketut@fa.itb.ac.id