Sains Malaysiana 48(6)(2019): 1221–1231

http://dx.doi.org/10.17576/jsm-2019-4806-09

 

Analisis Tenaga Bebas dan Sifat Mangkin PtRuFeNi untuk Sel Fuel Metanol Langsung (DMFC) Tunggal

(Analysis of Free Energy and Behaviour of PtRuFeNi Catalyst for Single Direct Methanol Fuel Cell (DMFC))

 

SAHRIAH BASRI1* & SITI KARTOM KAMARUDIN1,2

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical and Process, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 16 November 2018/Accepted: 6 March 2019

 

ABSTRAK

Mangkin dwilogam PtRu adalah mangkin konversional yang biasa digunakan untuk aplikasi sel fuel metanol langsung (DMFC). Walau bagaimanapun, kadar tindak balas pengoksidaan metanol (MOR) yang rendah menjadi kekangan yang ketara kepada penurunan prestasi dan kuasa DMFC. Kos PtRu yang sangat mahal menghalang DMFC untuk dikomersialkan yang setanding bateri. Maka, muatan PtRu dikurangkan dan logam alternatif perlu ditambah bagi memastikan prestasi DMFC dikekalkan. Justeru, objektif utama kajian ini adalah menganalisis logam alternatif yang berpotensi untuk dijadikan sebagai mangkin. Empat mangkin berpotensi iaitu ferum (Fe), nikel (Ni), aurum (Au) dan paladium (Pd) disimulasikan dengan Pt dan Ru menggunakan kaedah kimia pengkomputeran. Perisian Material Studio digunakan untuk menganalisis tenaga bebas dan tenaga penjerapan. Analisis kajian ini menemui bahawa logam ferum (Fe) dan nikel (Ni) memiliki prestasi yang sama dengan Pt dan Ru. Sel tunggal DMFC kemudian dibangunkan dengan menggunakan nanomangkin PtRuFeNi yang disokong dengan tiub nano karbon (MWCNT). Prestasi sel tunggal DMFC yang dihasilkan menggunakan mangkin PtPtRuFeNi/MWCNT adalah 11 mW dengan ketumpatan arus optimum sebanyak 33 mA.cm-2.

 

Kata kunci: Sel fuel metanol langsung; tenaga bebas; tiub nano karbon

 

ABSTRACT

Bimetallic PtRu catalysts is a conventional anode catalyst commonly used for direct methanol fuel cell application (DMFC). However, the low methanol oxidation reaction (MOR) rate has been a significant constraint to the DMFC performance and power output. Besides, expensive PtRu prevents DMFCs from being commercially as compare to batteries. Therefore, PtRu catalyst loading needs to be reduced and alternative metal should be added to ensure DMFC performance is maintained. Hence, the main objective of this study was to analyze potential alternative catalysts metals. Four potential catalysts, ferum (Fe), nikle (Ni), aurum (Au) and palladium (Pd) were simulated using computational chemistry. Material Studio software used to analyse free energy analysis and adsorption energy. The analysis using Material Studio software showed that the ferum (Fe) and nickel (Ni) had the same performance as Pt and Ru. Then, DMFC single cell was fabricated using PtRuFeNi nanocatalyst supported with multi -walled carbon nanotube (MWCNT) and found high DMFC performance compared to PtRu catalysts. The performance of single cell DMFC produced by PtRuFeNi/MWCNT nanocatalyst is 11 mW with optimum current density of 33 mA.cm-2.

 

Keywords: Carbon nanotube; direct methanol fuel cell (DMFC); free energy

REFERENCES

Ahmad, M.M., Kamarudin, S.K. & Daud, W.R.W. 2010. Design of an optimal micro direct methanol fuel cell for portable applications. Sains Malaysiana 39(3): 467-472.

Ahmed, K.H. 2015. Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews 42: 460-476.

Basri, S., Kamarudin, S.K., Daud, W.R.W. , Yaakob, Z. & Khadum, A.A.H. 2015. Study on kinetic energy of a novel metal composite for anode catalyst in direct methanol fuel cell. International Journal of Energy Research 39(2): 181-190.

Ferrin, P., Nilekar, A.U., Greeley, J., Mavrikakis, M. & Rossmeisl, J. 2008. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surface Science 602 (21): 3424-3431

Hongjuan, W., Xiaohui, W., Jiadao, Z., Feng, P. & Hao, Y. 2014. Pt/MoO3-WO3/CNTs catalyst with excellent performance for methanol electrooxidation. Chinese Journal of Catalysis 35(10): 1687-1694.

Jiming, L., Yingke, Z., Xiaohui, T., Xiao, X., Hongxi, Z., Shaowei, Z. & Tao, Y. 2014. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation. Applied Surface Science 317: 284-293.

Hashim, N., Kamarudin, S.K. & Daud, W.R.W. 2010. Design and development of micro direct methanol fuel cell (μDMFC) for portable application. Sains Malaysiana 39(6): 1015-1023.

Huimin, Y., Baiyan, Z., Bin, Z., Zhe, G. & Yong, Q. 2018. N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation. Chinese Journal of Catalysis 39(6): 1038-1043.

Karim, N.A., Kamarudin, S.K., Shyuan, L.K., Yaakob, Z., Daud, W.R.W. & Khadum, A.A.H. 2014. Novel cathode catalyst for DMFC: Study of the density of states of oxygen adsorption using density functional theory. International Journal of Hydrogen Energy 39(30): 17295-17305.

Liyuan, G., Zhiyuan, Y., Kui, L., Wei, X., Changpeng, L. & Junjie, G. 2018. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry 7(6): 1618-1628.

Mustafa, E., Adnan, O., Erol, S. & Colpan, C.O. 2017. Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications. International Journal of Hydrogen Energy 42(33): 21518-21529.

Ozlem, S. & Hilal, K. 2013. A comparative study of electrochemical methods on Pt-Ru DMFC anode catalysts: The effect of Ru addition. International Journal of Hydrogen Energy 38(2): 901-909.

Prasad, P.P., Datta, M.K., Jampani, P.H., Hong, D., Poston, J.A., Manivannan, A. & Kumta, P.N. 2015. High performance and durable nanostructured TiN supported Pt50-Ru50 anode catalyst for direct methanol fuel cell (DMFC). Journal of Power Sources 293: 437-446.

Selvarani, G., Vinod, S.S., Krishnamurthy, S., Kiruthika, G.V.M., Sridhar, P., Pitchumani, S. & Shukla, A.K. 2009. A methanol-tolerant-supported Pt-Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C. 113: 7461-7468.

Subhajyoti, S., Kousik, B., Debabrata, P., Biswarup, S. & Rajendra, S. 2018. Ni and Cu ion-exchanged nanostructured mesoporous zeolite: A noble metal free, efficient, and durable electrocatalyst for alkaline methanol oxidation reaction. Materials Today Energy 8: 45-56.

Vrushali, S.J., Durgasha, C.P., Ashis, K.S., Kashinath, R.P. & Santosh, K.H. 2018. Methanol oxidation reaction on Pt based electrocatalysts modified ultramicroelectrode (UME): Novel electrochemical method for monitoring rate of CO adsorption. Electrochimica Acta 286: 287-295.

Zainoodin, A.M., Kamarudin, S.K., Masdar, M.S., Daud, W.R.W., Mohamad, A.B. & Sahari, J. 2015. Optimization of a porous carbon nanofiber layer for the membrane electrode assembly in DMFC. Energy Conversion and Management 101: 525-531.

 

*Corresponding author; email: sahriah@ukm.edu.my

 

 

previous