Sains Malaysiana 48(6)(2019): 1221–1231
http://dx.doi.org/10.17576/jsm-2019-4806-09
Analisis Tenaga Bebas
dan Sifat Mangkin PtRuFeNi untuk Sel Fuel Metanol Langsung (DMFC) Tunggal
(Analysis of Free Energy
and Behaviour of PtRuFeNi Catalyst for Single Direct Methanol Fuel
Cell (DMFC))
SAHRIAH BASRI1* & SITI KARTOM KAMARUDIN1,2
1Fuel Cell
Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Department
of Chemical and Process, Faculty of Engineering & Built Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 16
November 2018/Accepted: 6 March 2019
ABSTRAK
Mangkin dwilogam PtRu
adalah mangkin konversional yang biasa digunakan untuk aplikasi sel fuel metanol
langsung (DMFC). Walau bagaimanapun, kadar tindak balas
pengoksidaan metanol (MOR) yang rendah menjadi kekangan yang
ketara kepada penurunan prestasi dan kuasa DMFC.
Kos PtRu yang sangat mahal menghalang DMFC untuk dikomersialkan yang
setanding bateri. Maka, muatan PtRu dikurangkan dan logam alternatif perlu
ditambah bagi memastikan prestasi DMFC dikekalkan. Justeru,
objektif utama kajian ini adalah menganalisis logam alternatif yang berpotensi
untuk dijadikan sebagai mangkin. Empat mangkin berpotensi iaitu ferum (Fe),
nikel (Ni), aurum (Au) dan paladium (Pd) disimulasikan dengan Pt dan Ru
menggunakan kaedah kimia pengkomputeran. Perisian Material Studio digunakan
untuk menganalisis tenaga bebas dan tenaga penjerapan. Analisis kajian ini
menemui bahawa logam ferum (Fe) dan nikel (Ni) memiliki prestasi yang sama
dengan Pt dan Ru. Sel tunggal DMFC kemudian dibangunkan
dengan menggunakan nanomangkin PtRuFeNi yang disokong dengan tiub nano karbon (MWCNT).
Prestasi sel tunggal DMFC yang dihasilkan menggunakan
mangkin PtPtRuFeNi/MWCNT adalah 11 mW dengan ketumpatan
arus optimum sebanyak 33 mA.cm-2.
Kata kunci: Sel fuel
metanol langsung; tenaga bebas; tiub nano karbon
ABSTRACT
Bimetallic PtRu
catalysts is a conventional anode catalyst commonly used for direct methanol
fuel cell application (DMFC). However, the low methanol
oxidation reaction (MOR) rate has been a significant
constraint to the DMFC performance and power output.
Besides, expensive PtRu prevents DMFCs from being commercially
as compare to batteries. Therefore, PtRu catalyst loading needs to be reduced
and alternative metal should be added to ensure DMFC performance
is maintained. Hence, the main objective of this study was to analyze potential
alternative catalysts metals. Four potential catalysts, ferum (Fe), nikle (Ni),
aurum (Au) and palladium (Pd) were simulated using computational chemistry.
Material Studio software used to analyse free energy analysis and adsorption
energy. The analysis using Material Studio software showed that the ferum (Fe)
and nickel (Ni) had the same performance as Pt and Ru. Then, DMFC single
cell was fabricated using PtRuFeNi nanocatalyst supported with multi -walled
carbon nanotube (MWCNT) and found high DMFC performance
compared to PtRu catalysts. The performance of single cell DMFC produced
by PtRuFeNi/MWCNT nanocatalyst is 11 mW with optimum current density
of 33 mA.cm-2.
Keywords: Carbon nanotube; direct methanol fuel cell (DMFC); free energy
REFERENCES
Ahmad, M.M.,
Kamarudin, S.K. & Daud, W.R.W. 2010. Design of an optimal micro
direct methanol fuel cell for portable applications. Sains Malaysiana
39(3): 467-472.
Ahmed, K.H.
2015. Applications of nanotechnology in renewable energies-A comprehensive
overview and understanding. Renewable and Sustainable Energy
Reviews 42: 460-476.
Basri, S.,
Kamarudin, S.K., Daud, W.R.W. , Yaakob, Z. & Khadum, A.A.H.
2015. Study on kinetic energy of a novel metal composite for anode
catalyst in direct methanol fuel cell. International Journal
of Energy Research 39(2): 181-190.
Ferrin, P.,
Nilekar, A.U., Greeley, J., Mavrikakis, M. & Rossmeisl, J. 2008.
Reactivity descriptors for direct methanol fuel cell anode catalysts.
Surface Science 602 (21): 3424-3431
Hongjuan,
W., Xiaohui, W., Jiadao, Z., Feng, P. & Hao, Y. 2014. Pt/MoO3-WO3/CNTs
catalyst with excellent performance for methanol electrooxidation. Chinese
Journal of Catalysis 35(10): 1687-1694.
Jiming, L.,
Yingke, Z., Xiaohui, T., Xiao, X., Hongxi, Z., Shaowei, Z. & Tao, Y. 2014.
Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as
catalysts for methanol electrooxidation. Applied Surface Science 317:
284-293.
Hashim, N.,
Kamarudin, S.K. & Daud, W.R.W. 2010. Design and development of micro direct
methanol fuel cell (μDMFC) for portable application. Sains Malaysiana 39(6):
1015-1023.
Huimin, Y.,
Baiyan, Z., Bin, Z., Zhe, G. & Yong, Q. 2018. N-doped carbon modified
Pt/CNTs synthesized by atomic layer deposition with enhanced activity and
stability for methanol electrooxidation. Chinese Journal of Catalysis 39(6):
1038-1043.
Karim, N.A.,
Kamarudin, S.K., Shyuan, L.K., Yaakob, Z., Daud, W.R.W. & Khadum, A.A.H.
2014. Novel cathode catalyst for DMFC: Study of the density of states of oxygen
adsorption using density functional theory. International Journal of
Hydrogen Energy 39(30): 17295-17305.
Liyuan, G.,
Zhiyuan, Y., Kui, L., Wei, X., Changpeng, L. & Junjie, G. 2018. Recent
development of methanol electrooxidation catalysts for direct methanol fuel
cell. Journal of Energy Chemistry 7(6): 1618-1628.
Mustafa, E.,
Adnan, O., Erol, S. & Colpan, C.O. 2017. Characterization and performance
evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications. International
Journal of Hydrogen Energy 42(33): 21518-21529.
Ozlem, S.
& Hilal, K. 2013. A comparative study of electrochemical methods on Pt-Ru
DMFC anode catalysts: The effect of Ru addition. International Journal of
Hydrogen Energy 38(2): 901-909.
Prasad,
P.P., Datta, M.K., Jampani, P.H., Hong, D., Poston, J.A., Manivannan, A. &
Kumta, P.N. 2015. High performance and durable nanostructured TiN supported
Pt50-Ru50 anode catalyst for direct methanol fuel cell (DMFC). Journal of
Power Sources 293: 437-446.
Selvarani,
G., Vinod, S.S., Krishnamurthy, S., Kiruthika, G.V.M., Sridhar, P., Pitchumani,
S. & Shukla, A.K. 2009. A methanol-tolerant-supported Pt-Au alloy cathode
catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys.
Chem. C. 113: 7461-7468.
Subhajyoti,
S., Kousik, B., Debabrata, P., Biswarup, S. & Rajendra, S. 2018. Ni and Cu
ion-exchanged nanostructured mesoporous zeolite: A noble metal free, efficient,
and durable electrocatalyst for alkaline methanol oxidation reaction. Materials
Today Energy 8: 45-56.
Vrushali,
S.J., Durgasha, C.P., Ashis, K.S., Kashinath, R.P. & Santosh, K.H. 2018.
Methanol oxidation reaction on Pt based electrocatalysts modified
ultramicroelectrode (UME): Novel electrochemical method for monitoring rate of
CO adsorption. Electrochimica Acta 286: 287-295.
Zainoodin,
A.M., Kamarudin, S.K., Masdar, M.S., Daud, W.R.W., Mohamad, A.B. & Sahari,
J. 2015. Optimization of a porous carbon nanofiber layer for the membrane
electrode assembly in DMFC. Energy Conversion and Management 101:
525-531.
*Corresponding
author; email: sahriah@ukm.edu.my
|