Sains Malaysiana 48(6)(2019): 1233–1238

http://dx.doi.org/10.17576/jsm-2019-4806-10

 

Synthesis of Graphene/Cu2O Thin Film Photoelectrode via Facile Hydrothermal Method for Photoelectrochemical Measurement

(Sintesis Fotoelektrod Filem Nipis Grafen/Cu2O melalui Kaedah Hidroterma Tindak Balas Mudah bagi Pengukuran Fotoelektrokimia)

 

ROSMAHANI MOHD SHAH1, ROZAN MOHAMAD YUNUS2*, MOHD SHAHBUDIN MASDAR@MASTAR1,2, LORNA JEFFEREY MINGGU2, WAI YIN WONG2 & ABDUL AMIR H. KADHUM1

 

1Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 21 November 2018/Accepted: 1 March 2019

 

ABSTRACT

The process of carbon dioxide (CO2) reduction by using efficient non-precious-metal catalyst to make the process be economical has brought a comprehensive research in the area. In this study, graphene layer in copper foil was easily synthesized using hydrothermal method at temperature 200°C in 3 h duration. Diffraction peaks in XRD at around 29°, 36°, 42° and 74° in the composites correlate to the (110), (111), (200) and (311) crystalline planes of cubic cuprous oxide (Cu2O), while peak at 27° showed the carbon graphitic peak. Raman confirms the presence of the graphene layer on Cu2O. Photoelectrochemical performance test of Graphene/Cu2O demonstrated that the photoelectrocatalyst showing the photocurrent density 9.6 mA cm-2 at -0.8V vs Ag/AgCl. This study demonstrated a potential of semiconductor-based hybrid electrode for an efficient photoelectrocatalytic of CO2 reduction.

 

Keywords: CO2 reduction; cuprous oxide; graphene; photoelectrochemical

 

ABSTRAK

Proses penurunan karbon dioksida (CO2) dengan menggunakan pemangkin bukan logam berharga yang berkesan untuk menghasilkan proses yang lebih berekonomi telah membawa kepada penyelidikan yang komprehensif dalam bidang tersebut. Dalam kajian ini, lapisan grafen pada kerajang tembaga disintesis dengan mudah menggunakan kaedah hidroterma pada suhu 200°C dalam tempoh masa 3 jam. Puncak belauan XRD pada sudut 29°, 36°, 42° dan 74° menunjukkan satah hablur kubik oksida (Cu2O) (110), (111), (200) dan (311) dan puncak grafit karbon ditunjukkan pada sudut 27°. Raman mengesahkan kehadiran lapisan grafen pada Cu2O. Ujian prestasi fotopemangkinan grafen/Cu2O menunjukkan bahawa fotomangkin tersebut mempunyai ketumpatan fotokimia 9.6 mA cm-2 pada -0.8V vs Ag/AgCl. Kajian ini menyumbang kepada penghasilan elektrod hibrid berasaskan semikonduktor sebagai fotomangkin yang berkesan untuk penurunan CO2.

 

Kata kunci: Fotoelektrokimia; grafen; kuprus oksida; penurunan CO2

REFERENCES

An, X., Li, K. & Tang, J. 2014. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 7(4): 1086-1093.

Dave, S.H., Gong, C., Robertson, A.W., Warner, J.H. & Grossman, C. 2016. Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8): 7515-7522.

de Brito, J.F., Araujo, A.R., Rajeshwar, K. & Zanoni, M.V.B. 2015. Photoelectrochemical reduction of CO2 on Cu/ Cu2O films: Product distribution and pH effects. Chemical Engineering Journal 264: 302-309.

Fan, Y.J. & Wu, S.F. 2016. A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. Journal of CO2 Utilization 16: 150-156.

Geim, A.K. & Novoselov, K.S. 2009. The rise of graphene. Nature Materials 6(11-19): 183-191.

Gusain, R., Kumar, P., Sharma, O.P., Jain, S.L. & Khatri, O.P. 2016. Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO into methanol under visible light irradiation. Applied Catalysis B: Environmental 181: 352-362.

Jiang, Z., Xiao, T., Kuznetsov, V.L. & Edwards, P.P. 2010. Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1923): 3343-3364.

Kalamaras, E., Maroto-Valer, M.M., Shao, M., Xuan, J. & Wang, H. 2018. Solar carbon fuel via photoelectrochemistry. Catalysis Today 317: 56-75.

Li, X., Yu, J., Wageh, S., Al-Ghamdi, A.A. & Xie, J. 2016. Graphene in photocatalysis: A review. Small 12(48): 6640- 6696.

Li, Z., Pi, Y., Xu, D., Li, Y., Peng, W., Zhang, G., Zhang, F. & Fan, X. 2017. Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C–C bond formation. Applied Catalysis B: Environmental 213: 1-8.

Nor Lailatul Wahidah, M., Wan Juliana, W.A., Nizam, M.S. & Che Radziah, C.M.Z. 2017. Effects of elevated atmospheric CO2 on photosynthesis, growth and biomass in Shorea platycarpa F. Heim (Meranti Paya). Sains Malaysiana 46(9): 1421-1428.

Nur, M., Salehmin, I., Je, L., Mark-Lee, W.F., Azuwa, M., Ari, K., Ha, M., Jumali, H. & Kassim, M.B. 2018. Solar energy materials and solar cells highly photoactive Cu2O nanowire film prepared with modified scalable synthesis method for enhanced photoelectrochemical performance. Solar Energy Materials and Solar Cells 182(3): 237-245.

Ong, W.J., Tan, L.L., Chai, S.P. & Yong, S.T. 2015. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene–g- C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 51(5): 858-861.

Pan, X., Zhao, Y., Wang, S. & Fan, Z. 2013. TiO2/graphene nanocomposite for photocatalytic application. Materials and Processes for Energy: Communicating Current Research and Technological Developments. pp. 913-920.

Patten, H.V., Velický, M. & Dryfe, R.A.W.W. 2016. Electrochemistry of graphene. Advances in Electrochemical Science and Engineering 16: 121-161.

Pei, S. & Cheng, H.M. 2012. The reduction of graphene oxide. Carbon 50(9): 3210-3228.

Qiao, J., Liu, Y., Hong, F. & Zhang, J. 2014. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43: 631-675.

Somiya, S. & Roy, R. 2000. Hydrothermal synthesis of fine oxide powders. Bulletin of Materials Science 23(6): 453-460.

Wu, J., Bin Lin, M.L., Cong, X., Liu, H.N. & Tan, P.H. 2018. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews 47(5): 1822-1873.

Wui Fui, M.L., Yan Yi, C., Kung, P.L. & Ishak, M.K. 2019. Synthesis, structure and density functional theory (DFT) study of a rhenium (I) pyridylpyrazol complex as a potential photocatalyst for CO2 reduction. Sains Malaysiana 47(7): 1491-1499.

Zhu, W., Zhang, Y.J., Zhang, H., Lv, H., Li, Q., Michalsky, R., Peterson, A.A. & Sun, S. 2014. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. Journal of the American Chemical Society 136(46): 16132-16135.

 

*Corresponding author; email: rozanyunus@ukm.edu.my

 

 

 

previous