Sains Malaysiana 48(6)(2019): 1233–1238
http://dx.doi.org/10.17576/jsm-2019-4806-10
Synthesis of Graphene/Cu2O Thin Film Photoelectrode
via Facile Hydrothermal Method for Photoelectrochemical
Measurement
(Sintesis Fotoelektrod Filem Nipis Grafen/Cu2O
melalui Kaedah
Hidroterma Tindak Balas Mudah bagi
Pengukuran Fotoelektrokimia)
ROSMAHANI MOHD
SHAH1,
ROZAN
MOHAMAD
YUNUS2*,
MOHD
SHAHBUDIN
MASDAR@MASTAR1,2,
LORNA
JEFFEREY
MINGGU2,
WAI
YIN WONG2
& ABDUL AMIR H. KADHUM1
1Research Centre for Sustainable
Process Technology, Faculty of Engineering & Built Environment,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received:
21 November 2018/Accepted: 1 March 2019
ABSTRACT
The process of carbon dioxide
(CO2) reduction by using efficient
non-precious-metal catalyst to make the process be economical has
brought a comprehensive research in the area. In this study, graphene
layer in copper foil was easily synthesized using hydrothermal method
at temperature 200°C in 3 h duration. Diffraction peaks in XRD at around 29°, 36°, 42° and
74° in the composites correlate to the (110), (111), (200) and (311)
crystalline planes of cubic cuprous oxide (Cu2O),
while peak at 27° showed the carbon graphitic peak. Raman confirms
the presence of the graphene layer on Cu2O. Photoelectrochemical
performance test of Graphene/Cu2O demonstrated that the
photoelectrocatalyst showing the photocurrent density 9.6
mA cm-2 at -0.8V vs Ag/AgCl. This study
demonstrated a potential of semiconductor-based hybrid electrode
for an efficient photoelectrocatalytic
of CO2 reduction.
Keywords: CO2 reduction;
cuprous oxide; graphene; photoelectrochemical
ABSTRAK
Proses penurunan
karbon dioksida
(CO2)
dengan menggunakan
pemangkin bukan logam berharga yang berkesan untuk menghasilkan proses yang lebih berekonomi telah membawa kepada penyelidikan yang komprehensif dalam bidang tersebut.
Dalam
kajian ini, lapisan
grafen pada
kerajang tembaga disintesis dengan mudah menggunakan kaedah hidroterma pada suhu 200°C dalam tempoh masa 3 jam.
Puncak belauan XRD pada sudut 29°, 36°, 42° dan 74° menunjukkan satah hablur kubik
oksida (Cu2O) (110), (111), (200)
dan (311) dan puncak
grafit karbon
ditunjukkan pada sudut 27°. Raman mengesahkan
kehadiran lapisan
grafen pada Cu2O.
Ujian
prestasi fotopemangkinan grafen/Cu2O menunjukkan
bahawa fotomangkin
tersebut mempunyai ketumpatan fotokimia 9.6 mA cm-2
pada -0.8V vs Ag/AgCl. Kajian ini menyumbang kepada penghasilan elektrod hibrid berasaskan semikonduktor sebagai fotomangkin yang berkesan untuk penurunan CO2.
Kata kunci: Fotoelektrokimia;
grafen; kuprus
oksida; penurunan CO2
REFERENCES
An, X.,
Li, K. & Tang, J. 2014. Cu2O/reduced graphene oxide composites
for the photocatalytic conversion of CO2. ChemSusChem
7(4): 1086-1093.
Dave,
S.H., Gong, C., Robertson, A.W., Warner, J.H. & Grossman, C.
2016. Chemistry and structure of graphene oxide via direct imaging.
ACS Nano 10(8): 7515-7522.
de Brito,
J.F., Araujo, A.R., Rajeshwar, K. &
Zanoni, M.V.B. 2015. Photoelectrochemical
reduction of CO2 on Cu/ Cu2O films: Product distribution and pH
effects. Chemical Engineering Journal 264: 302-309.
Fan,
Y.J. & Wu, S.F. 2016. A graphene-supported copper-based catalyst
for the hydrogenation of carbon dioxide to form methanol. Journal
of CO2 Utilization 16: 150-156.
Geim, A.K. & Novoselov,
K.S. 2009. The rise of graphene. Nature Materials 6(11-19):
183-191.
Gusain, R., Kumar, P., Sharma, O.P., Jain,
S.L. & Khatri, O.P. 2016. Reduced graphene oxide-CuO
nanocomposites for photocatalytic conversion of CO into methanol
under visible light irradiation. Applied Catalysis B: Environmental
181: 352-362.
Jiang,
Z., Xiao, T., Kuznetsov, V.L. & Edwards,
P.P. 2010. Turning carbon dioxide into fuel. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences
368(1923): 3343-3364.
Kalamaras, E., Maroto-Valer,
M.M., Shao, M., Xuan, J. & Wang, H. 2018. Solar carbon fuel
via photoelectrochemistry. Catalysis Today 317: 56-75.
Li, X.,
Yu, J., Wageh, S., Al-Ghamdi,
A.A. & Xie, J. 2016. Graphene in photocatalysis: A review. Small 12(48): 6640- 6696.
Li, Z.,
Pi, Y., Xu, D., Li, Y., Peng, W., Zhang, G., Zhang, F. & Fan,
X. 2017. Utilization of MoS2 and graphene to enhance the photocatalytic
activity of Cu2O for oxidative C–C bond formation. Applied Catalysis
B: Environmental 213: 1-8.
Nor Lailatul Wahidah, M., Wan Juliana,
W.A., Nizam, M.S. & Che Radziah, C.M.Z. 2017. Effects of elevated atmospheric CO2
on photosynthesis, growth and biomass in Shorea
platycarpa F. Heim (Meranti
Paya). Sains
Malaysiana 46(9): 1421-1428.
Nur,
M., Salehmin, I., Je, L., Mark-Lee, W.F.,
Azuwa, M., Ari, K., Ha, M., Jumali,
H. & Kassim, M.B. 2018. Solar energy
materials and solar cells highly photoactive Cu2O nanowire film
prepared with modified scalable synthesis method for enhanced photoelectrochemical
performance. Solar Energy Materials and Solar Cells 182(3):
237-245.
Ong,
W.J., Tan, L.L., Chai, S.P. & Yong, S.T. 2015. Graphene oxide
as a structure-directing agent for the two-dimensional interface
engineering of sandwich-like graphene–g- C3N4 hybrid nanostructures
with enhanced visible-light photoreduction
of CO2 to methane. Chem. Commun. 51(5):
858-861.
Pan,
X., Zhao, Y., Wang, S. & Fan, Z. 2013. TiO2/graphene nanocomposite
for photocatalytic application. Materials and Processes for Energy:
Communicating Current Research and Technological Developments. pp.
913-920.
Patten,
H.V., Velický, M. & Dryfe,
R.A.W.W. 2016. Electrochemistry of graphene. Advances in Electrochemical
Science and Engineering 16: 121-161.
Pei,
S. & Cheng, H.M. 2012. The reduction of graphene oxide. Carbon
50(9): 3210-3228.
Qiao, J., Liu, Y., Hong, F. & Zhang,
J. 2014. A review of catalysts for the electroreduction
of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev.
43: 631-675.
Somiya, S. & Roy, R. 2000. Hydrothermal
synthesis of fine oxide powders. Bulletin of Materials Science
23(6): 453-460.
Wu, J.,
Bin Lin, M.L., Cong, X., Liu, H.N. & Tan, P.H. 2018. Raman spectroscopy
of graphene-based materials and its applications in related devices.
Chemical Society Reviews 47(5): 1822-1873.
Wui Fui,
M.L., Yan Yi, C., Kung, P.L. & Ishak,
M.K. 2019. Synthesis, structure and density functional theory (DFT)
study of a rhenium (I) pyridylpyrazol complex as a potential photocatalyst
for CO2 reduction. Sains Malaysiana 47(7): 1491-1499.
Zhu,
W., Zhang, Y.J., Zhang, H., Lv, H., Li,
Q., Michalsky, R., Peterson, A.A. & Sun, S. 2014. Active and
selective conversion of CO2 to CO on ultrathin Au nanowires. Journal
of the American Chemical Society 136(46): 16132-16135.
*Corresponding
author; email: rozanyunus@ukm.edu.my
|