Sains Malaysiana 48(6)(2019): 1239–1249

http://dx.doi.org/10.17576/jsm-2019-4806-11

 

3-Dimensional Electric Field Distributions of Castellated and Straight Dielectrophoresis Electrodes for Cell Separation

(Pengagihan Medan Elektrik 3-Dimensi Elektrod Dielektroforesis Kekota dan Lurus untuk Pembahagian Sel)

 

FARAHDIANA WAN YUNUS, MUHAMMAD RAMDZAN BUYONG, JUMRIL YUNAS, BURHANUDIN YEOP MAJLIS & AZRUL AZLAN HAMZAH*

 

Institute of Microenegineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 13 December 2018/Accepted: 28 February 2019

 

ABSTRACT

This paper discusses the 3-dimensional (3D) electric field distributions on the surface and across the bulk volume of dielectrophoresis (DEP) electrodes. The importance of obtained high electric field is to ensure that biological particles will be able to separate even at low voltage potentials in order to avoid damage to the biological particles. Two electrodes - straight and castellated, were designed using the COMSOL Multiphysics Software Version 5.2 to compare the surface distribution and volume electric fields along the x, y and z axes. The results showed that castellated electrodes showcased higher electric fields for both the surface and volume factors along all axes. The maximum value of volume electric field results was 3.94×105 V/m along the x-axis, 3.80×105 V/m along the y-axis and 1.65×105 V/m along the z-axis. The maximum value of surface electric fields distributions was 3.39×105 V/m along the x-axis, 2.87×105 V/m along the y-axis and 1.14×105 V/m along the z-axis. Additionally, the uniformity of the electric field lines distribution from the COMSOL Multiphysics also indicated that castellated electrodes have a much higher uniformity. The experimental results showed that the castellated electrodes separated particles much faster at 69 s, as compared to straight electrodes at 112 s. Henceforth, this has proven that castellated electrodes have a high electric field as it separates much faster as compared to straight electrodes

.

Keywords: Biological particles; castellated electrodes; DEP; dielectrophoresis; electric fields; straight electrodes

 

ABSTRAK

Kajian ini membincangkan aliran medan elektrik 3-dimensi (3D) pada permukaan dan isi padu elektrod dieletroforesis (DEP). Medan elektik begitu penting bagi memastikan sel zarah biologi mampu untuk dipisahkan walaupun pada voltan yang rendah bagi mengelakkan kerosakan pada sel zarah tersebut. Dua elektrod, lurus dan kekota direka bentuk menggunakan perisian COMSOL Multiphysics versi 5.2 bagi membandingkan taburan medan elektrik di permukaan elektrod dan isi padu elektrod pada paksi x, y dan z. Keputusan menunjukkan bahawa elektrod kekota mempunyai medan elektrik yang tertinggi pada kedua-dua medan elektrik permukaan dan medan elektrik isi padu. Keputusan pada medan elektrik berisi padu adalah bernilai 3.94×105 V/m pada paksi x, 3.80×105 V/m pada paksi y dan 1.65×105 V/m pada paksi z, manakala keputusan pada medan elektrik permukaan adalah 3.39×105 V/m pada paksi x, 2.87×105 V/m paksi y dan 1.14×105 V/m pada paksi z. Tambahan pula, keputusan COMSOL Multiphysic juga menjelaskan keseragaman medan elektrik pada elektrod kekota adalah lebih tinggi. Keputusan menunjukkan elektrod kekota berjaya mengasingkan zarah dengan lebih cepat iaitu pada 69 s berbanding elektrod lurus pada 112 s. Oleh yang demikian, ini telah membuktikan bahawa elektrod kekota mempunyai daya medan elektrik yang tinggi setelah ia berjaya memisahkan sampel sel zarah tersebut lebih laju daripada elektrod lurus.

 

Kata kunci: DEP; dielektroforesis; elektrod kekota; elektrod lurus; medan elektrik; zarah biologi

REFERENCES

Abidin, H.E.Z., Hamzah, A.A., Majlis, B.Y., Yunas, J., Hamid, N.A. & Abidin, U. 2013. Electrical characteristics of double stacked ppy-pva supercapacitor for powering biomedical mems devices. Microelectronic Engineering 111: 374-378.

Becker, F.F., Wang, X.B., Huang, Y., Pethig, R., Vykoukal, J. & Gascoyne, P.R. 1995. Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings of the National Academy of Sciences 92(3): 860-864.

Burham, N., Hamzah, A.A. & Majlis, B.Y. 2014a. Mechanical characteristics of porous silicon membrane for filtration in artificial kidney. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE. pp. 119-122.

Burham, N., Hamzah, A.A. & Majlis, B.Y. 2014b. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane. Bio-Medical Materials and Engineering 24(6): 2203-2209.

Burham, N., Hamzah, A.A. & Majlis, B.Y. 2015. Effect of isopropyl alcohol (IPA) on etching rate and surface roughness of silicon etched in KOH solution. RSM 2015-2015 IEEE Regional Symposium on Micro and Nano Electronics, Proceedings. pp. 1-4.

Buyong, M.R., Larki, F., Takamura, Y., Aziz, N.A., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2016. Implementing the concept of dielectrophoresis in glomerular filtration of human kidneys. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE. pp. 33-37.

Buyong, M.R., Aziz, N.A., Hamzah, A.A. & Majlis, B.Y. 2014a. Dielectrophoretic characterization of array type microelectrodes. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE (Dc). pp. 240-243.

Buyong, M.R., Aziz, N.A., Hamzah, A.A., Wee, M.F.M.R. & Majlis, B.Y. 2014b. Finite element modeling of dielectrophoretic microelectrodes based on a array and ratchet type. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE. pp. 3: 236-239.

Çetin, B., Kang, Y., Wu, Z. & Li, D. 2009. Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis 30(5): 766-772.

Díaz, R. & Payen, S. 2013. Biological cell separation using dielectrophoresis in a microfluidic device. Www-Bsac.Eecs. Berkeley.Edu. pp. 1-4.

Hamzah, A.A., Yunas, J., Majlis, B.Y. & Ahmad, I. 2008. Sputtered encapsulation as wafer level packaging for isolatable MEMS devices: A technique demonstrated on a capacitive accelerometer. Sensors 8(11): 7438-7452.

Hamzah, A.A., Zainal Abidin, H.E., Yeop Majlis, B., Mohd Nor, M., Ismardi, A., Sugandi, G., Tiong, T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration. Journal of Micromechanics and Microengineering23(7): 074007.

Ismail, S., Mahmood, N.H. & Razak, M.A.A. 2017. Optimization of interdigitated electrodes in electric field distribution and thermal effect. Journal of Telecommunication, Electronic and Computer Engineering 9(3): 85-89.

Markx, G.H. 2007. Tissue engineering with electric fields: Investigation of the shape of mammalian cell aggregates formed at interdigitated oppositely castellated electrodes. Electrophoresis 28(21): 3821-3828.

Marsi, N., Majlis, B.Y., Hamzah, A.A. & Mohd-Yasin, F. 2014. The mechanical and electrical effects of MEMS capacitive pressure sensor based 3C-SiC for extreme temperature. Journal of Engineering 2014: 715167.

Mmm, G.O., Mmm, G.O., Psf, M.M.M. & Psf, M.M.M. 2018. The effect of ZnO loading for the enhancement of PSF/ZnO-GO mixed matrix membrane performance. Sains Malaysiana47(9): 2035-2045.

Morgan, H., Hughes, M.P. & Green, N.G. 1999. Separation of submicron bioparticles by dielectrophoresis. Biophysical Journal 77(1): 516-525.

Nakano, A., Chao, T.C., Camacho-Alanis, F. & Ros, A. 2011. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis 32(17): 2314-2322.

Pethig, R. 2010. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4(2): 1-35.

Pethig, R., Menachery, A., Pells, S. & De Sousa, P. 2010. Dielectrophoresis: A review of applications for stem cell research. Journal of Biomedicine and Biotechnology 2010: Article ID. 182581.

Piacentini, N., Mernier, G., Tornay, R. & Renaud, P. 2011a. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3): 1-8.

Piacentini, N., Mernier, G., Tornay, R. & Renaud, P. 2011b. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3): 034122-034122-8.

Qian, C., Huang, H., Chen, L., Li, X., Ge, Z., Chen, T., Yang, Z. & Sun, L. 2014. Dielectrophoresis for bioparticle manipulation. International Journal of Molecular Sciences 15(10): 18281- 18309.

Rabiatul, N., Tajul, A., Abd, N. & Majlis, B.Y. 2018. Separation of micro engineered particle using dielectrophoresis technique. 2018 IEEE International Conference on Semiconductor Electronics (ICSE) 2018(8): 69-72.

Shamsudin, F.M., Radiman, S., Abdullah, Y. & Hamid, N.A. 2018. The effect of annealing to the hardness of high Y2O3 -oxide dispersion strengthened (ODS) ferritic steels. Sains Malaysiana47(1): 189-193.

Seyedi, S.S. & Matyushov, D.V. 2018. Protein dielectrophoresis in solution. Journal of Physical Chemistry B 122(39): 9119- 9127.

Stevens, K.A. & Jaykus, L.A. 2004. Bacterial separation and concentration from complex sample matrices: A review. Critical Reviews in Microbiology 30(1): 7-24.

Tada, S., Omi, Y. & Eguchi, M. 2018. Analysis of the dielectrophoretic properties of cells using the isomotive AC electric field. Biomicrofluidics 12(4): 044103.

Wang, X.B., Huang, Y., Gascoyne, P.R.C. & Becker, F.F. 1997. Dielectrophoretic manipulation of particles. IEEE Transactions on Industry Applications 33(3): 660-669.

Yang, J., Huang, Y., Wang, X.B., Becker, F.F. & Gascoyne, P.R.C. 2000. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal 78(5): 2680-2689.

Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2009. Surface micromachined on-chip transformer fabricated on glass substrate. Microsystem Technologies 15(4): 547-552.

Yunus, F.W., Hamzah, A.A., Norzin, M.S., Buyong, M.R. & Yunas, J. 2018. Dielectrophoresis: Iron dificient anemic red blood cells for artificial kidney purposes. 2018 IEEE International Conference on Semiconductor Electronics (ICSE). pp. 5-8.

Yunus, F.W., Hamzah, A.A., Buyong, M.R., Yunas, J. & Majlis, B.Y. 2017. Negative charge dielectrophoresis by using different radius of electrodes for biological particles. Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics, RSM 2017: 84-87.

 

*Corresponding author; email: azlanhamzah@ukm.edu.my

 

 

 

previous