Sains Malaysiana 48(6)(2019): 1239–1249
http://dx.doi.org/10.17576/jsm-2019-4806-11
3-Dimensional Electric
Field Distributions of Castellated and Straight Dielectrophoresis Electrodes for Cell Separation
(Pengagihan Medan Elektrik 3-Dimensi Elektrod Dielektroforesis Kekota dan Lurus untuk Pembahagian Sel)
FARAHDIANA WAN YUNUS, MUHAMMAD RAMDZAN BUYONG, JUMRIL YUNAS, BURHANUDIN YEOP MAJLIS
& AZRUL AZLAN HAMZAH*
Institute of Microenegineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 13
December 2018/Accepted: 28 February 2019
ABSTRACT
This paper discusses
the 3-dimensional (3D) electric field distributions on the surface and across
the bulk volume of dielectrophoresis (DEP)
electrodes. The importance of obtained high electric field is to ensure that
biological particles will be able to separate even at low voltage potentials in
order to avoid damage to the biological particles. Two electrodes - straight
and castellated, were designed using the COMSOL Multiphysics Software Version 5.2 to compare the surface distribution and volume electric
fields along the x, y and z axes. The results showed that castellated
electrodes showcased higher electric fields for both the surface and volume
factors along all axes. The maximum value of volume electric field results was
3.94×105 V/m along the x-axis, 3.80×105 V/m
along the y-axis and 1.65×105 V/m along the z-axis. The
maximum value of surface electric fields distributions was 3.39×105 V/m
along the x-axis, 2.87×105 V/m along the y-axis and 1.14×105 V/m
along the z-axis. Additionally, the uniformity of the electric field lines
distribution from the COMSOL Multiphysics also indicated that castellated electrodes have a much higher uniformity. The
experimental results showed that the castellated electrodes separated particles
much faster at 69 s, as compared to straight electrodes at 112 s. Henceforth,
this has proven that castellated electrodes have a high electric field as it
separates much faster as compared to straight electrodes
.
Keywords: Biological
particles; castellated electrodes; DEP; dielectrophoresis;
electric fields; straight electrodes
ABSTRAK
Kajian ini membincangkan aliran medan elektrik 3-dimensi (3D) pada permukaan dan isi padu elektrod dieletroforesis (DEP). Medan elektik begitu penting bagi memastikan sel zarah biologi mampu untuk dipisahkan walaupun pada voltan yang rendah bagi mengelakkan kerosakan pada sel zarah tersebut. Dua elektrod, lurus dan kekota direka bentuk menggunakan perisian COMSOL Multiphysics versi 5.2 bagi membandingkan taburan medan elektrik di permukaan elektrod dan isi padu elektrod pada paksi x, y dan z. Keputusan menunjukkan bahawa elektrod kekota mempunyai medan elektrik yang tertinggi pada kedua-dua medan elektrik permukaan dan medan elektrik isi padu. Keputusan pada medan elektrik berisi padu adalah bernilai 3.94×105 V/m pada paksi x, 3.80×105 V/m pada paksi y dan 1.65×105 V/m pada paksi z, manakala keputusan pada medan elektrik permukaan adalah 3.39×105 V/m pada paksi x, 2.87×105 V/m paksi y dan 1.14×105 V/m pada paksi z. Tambahan pula, keputusan COMSOL Multiphysic juga menjelaskan keseragaman medan elektrik pada elektrod kekota adalah lebih tinggi. Keputusan menunjukkan elektrod kekota berjaya mengasingkan zarah dengan lebih cepat iaitu pada 69 s berbanding elektrod lurus pada 112 s. Oleh yang demikian, ini telah membuktikan bahawa elektrod kekota mempunyai daya medan elektrik yang tinggi setelah ia berjaya memisahkan sampel sel zarah tersebut lebih laju daripada elektrod lurus.
Kata kunci: DEP; dielektroforesis; elektrod kekota; elektrod lurus; medan elektrik; zarah biologi
REFERENCES
Abidin, H.E.Z., Hamzah,
A.A., Majlis, B.Y., Yunas,
J., Hamid, N.A. & Abidin, U. 2013. Electrical
characteristics of double stacked ppy-pva supercapacitor for powering biomedical mems devices. Microelectronic
Engineering 111: 374-378.
Becker, F.F., Wang, X.B., Huang, Y., Pethig,
R., Vykoukal, J. & Gascoyne, P.R. 1995.
Separation of human breast cancer cells from blood by differential dielectric
affinity. Proceedings of the National Academy of Sciences 92(3):
860-864.
Burham, N., Hamzah,
A.A. & Majlis, B.Y. 2014a. Mechanical
characteristics of porous silicon membrane for filtration in artificial kidney. IEEE International Conference on Semiconductor Electronics, Proceedings,
ICSE. pp. 119-122.
Burham, N., Hamzah,
A.A. & Majlis, B.Y. 2014b. Effect of hydrofluoric
acid (HF) concentration to pores size diameter of silicon membrane. Bio-Medical
Materials and Engineering 24(6): 2203-2209.
Burham, N., Hamzah, A.A. & Majlis, B.Y. 2015. Effect of isopropyl alcohol (IPA) on
etching rate and surface roughness of silicon etched in KOH solution. RSM
2015-2015 IEEE Regional Symposium on Micro and Nano Electronics, Proceedings.
pp. 1-4.
Buyong, M.R., Larki, F., Takamura,
Y., Aziz, N.A., Yunas, J., Hamzah,
A.A. & Majlis, B.Y. 2016. Implementing the
concept of dielectrophoresis in glomerular filtration
of human kidneys. IEEE International Conference on Semiconductor
Electronics, Proceedings, ICSE. pp. 33-37.
Buyong, M.R., Aziz, N.A., Hamzah, A.A. & Majlis, B.Y. 2014a. Dielectrophoretic characterization of array type microelectrodes. IEEE International
Conference on Semiconductor Electronics, Proceedings, ICSE (Dc). pp.
240-243.
Buyong, M.R., Aziz, N.A., Hamzah, A.A., Wee,
M.F.M.R. & Majlis, B.Y. 2014b. Finite element
modeling of dielectrophoretic microelectrodes based
on a array and ratchet type. IEEE International Conference on Semiconductor Electronics, Proceedings,
ICSE. pp. 3: 236-239.
Çetin, B., Kang, Y., Wu, Z. & Li, D. 2009. Continuous particle
separation by size via AC-dielectrophoresis using a
lab-on-a-chip device with 3-D electrodes. Electrophoresis 30(5):
766-772.
Díaz, R. & Payen, S. 2013. Biological
cell separation using dielectrophoresis in a
microfluidic device. Www-Bsac.Eecs. Berkeley.Edu.
pp. 1-4.
Hamzah, A.A., Yunas, J., Majlis,
B.Y. & Ahmad, I. 2008. Sputtered encapsulation as wafer level packaging for
isolatable MEMS devices: A technique demonstrated on a capacitive
accelerometer. Sensors 8(11): 7438-7452.
Hamzah, A.A., Zainal Abidin, H.E., Yeop Majlis, B., Mohd Nor, M., Ismardi,
A., Sugandi, G., Tiong,
T.Y., Dee, C.F. & Yunas, J. 2013.
Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration. Journal
of Micromechanics and Microengineering23(7):
074007.
Ismail, S.,
Mahmood, N.H. & Razak, M.A.A. 2017. Optimization
of interdigitated electrodes in electric field distribution and thermal effect. Journal of Telecommunication, Electronic and Computer Engineering 9(3):
85-89.
Markx, G.H. 2007. Tissue engineering with electric fields:
Investigation of the shape of mammalian cell aggregates formed at
interdigitated oppositely castellated electrodes. Electrophoresis 28(21):
3821-3828.
Marsi, N., Majlis, B.Y., Hamzah,
A.A. & Mohd-Yasin, F. 2014. The mechanical and
electrical effects of MEMS capacitive pressure sensor based 3C-SiC for extreme
temperature. Journal of Engineering 2014: 715167.
Mmm, G.O., Mmm, G.O., Psf,
M.M.M. & Psf, M.M.M. 2018. The effect of ZnO loading for the enhancement of PSF/ZnO-GO
mixed matrix membrane performance. Sains Malaysiana47(9): 2035-2045.
Morgan, H.,
Hughes, M.P. & Green, N.G. 1999. Separation of submicron bioparticles by dielectrophoresis. Biophysical Journal 77(1): 516-525.
Nakano, A.,
Chao, T.C., Camacho-Alanis, F. & Ros, A. 2011.
Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis 32(17): 2314-2322.
Pethig, R. 2010. Dielectrophoresis: Status of
the theory, technology, and applications. Biomicrofluidics 4(2): 1-35.
Pethig, R., Menachery, A., Pells,
S. & De Sousa, P. 2010. Dielectrophoresis: A
review of applications for stem cell research. Journal of Biomedicine and
Biotechnology 2010: Article ID. 182581.
Piacentini, N., Mernier, G., Tornay,
R. & Renaud, P. 2011a. Separation of platelets from other blood cells in
continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3):
1-8.
Piacentini, N., Mernier, G., Tornay,
R. & Renaud, P. 2011b. Separation of platelets from other blood cells in
continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3):
034122-034122-8.
Qian, C.,
Huang, H., Chen, L., Li, X., Ge, Z., Chen, T., Yang, Z. & Sun, L. 2014. Dielectrophoresis for bioparticle manipulation. International Journal of Molecular Sciences 15(10): 18281-
18309.
Rabiatul, N., Tajul, A., Abd,
N. & Majlis, B.Y. 2018. Separation of micro
engineered particle using dielectrophoresis technique. 2018 IEEE International Conference on Semiconductor Electronics
(ICSE) 2018(8): 69-72.
Shamsudin, F.M., Radiman, S., Abdullah, Y. &
Hamid, N.A. 2018. The effect of annealing to the hardness of high Y2O3 -oxide
dispersion strengthened (ODS) ferritic steels. Sains Malaysiana47(1):
189-193.
Seyedi, S.S. & Matyushov, D.V. 2018.
Protein dielectrophoresis in solution. Journal of
Physical Chemistry B 122(39): 9119- 9127.
Stevens,
K.A. & Jaykus, L.A. 2004. Bacterial separation
and concentration from complex sample matrices: A review. Critical Reviews
in Microbiology 30(1): 7-24.
Tada, S.,
Omi, Y. & Eguchi, M. 2018. Analysis of the dielectrophoretic properties of cells using the isomotive AC electric field. Biomicrofluidics 12(4): 044103.
Wang, X.B.,
Huang, Y., Gascoyne, P.R.C. & Becker, F.F. 1997. Dielectrophoretic manipulation of particles. IEEE Transactions on Industry Applications 33(3):
660-669.
Yang, J.,
Huang, Y., Wang, X.B., Becker, F.F. & Gascoyne, P.R.C. 2000. Differential
analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal 78(5): 2680-2689.
Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2009. Surface micromachined on-chip transformer fabricated on glass substrate. Microsystem Technologies 15(4):
547-552.
Yunus, F.W., Hamzah, A.A., Norzin, M.S., Buyong, M.R. & Yunas, J. 2018. Dielectrophoresis:
Iron dificient anemic red blood cells for artificial
kidney purposes. 2018 IEEE International Conference on Semiconductor
Electronics (ICSE). pp. 5-8.
Yunus, F.W., Hamzah, A.A., Buyong, M.R., Yunas, J. & Majlis, B.Y. 2017. Negative charge dielectrophoresis by using different radius of electrodes for biological particles. Proceedings
of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics,
RSM 2017: 84-87.
*Corresponding
author; email: azlanhamzah@ukm.edu.my
|