Sains Malaysiana 48(6)(2019): 1251–1257
http://dx.doi.org/10.17576/jsm-2019-4806-12
G-Centre Formation and
Behaviour in a Silicon on Insulator Platform by Carbon Ion Implantation
and Proton Irradiation
(Pembentukan
Pusat-G dan
Kelakuan dalam Silikon Pentas Penebat Implantasi Ion Karbon dan Sinaran Proton)
D.D. BERHANUDDIN1,2*, N.E.A. RAZAK1, M.A. LOURENÇO2,3, B.Y. MAJLIS1 & K.P. HOMEWOOD2,3,4
1Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Advanced
Technology Institute, Faculty of Engineering and Physical Sciences, University
of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
3Materials
Research Institute and School of Physics and Astronomy, Queen Mary University
of London, Mile End Road, E1 4NS London, United Kingdom
4School
of Materials Science & Engineering, Hubei University, Wuhan 430062, P.R.
China
Received:
31 December 2018/Accepted: 26 February 2019
ABSTRACT
The interest in the G-centre is driven by reports that it can lase in silicon. To
further this, the transfer of this technology from bulk silicon to a
silicon-on-insulator (SOI) platform is an essential
requirement to progress to lasing and optical amplification on silicon. We
report on the efficient generation of the lasing G-centre in SOI substrates by proton irradiation of carbon ion
implants. Following carbon implantation samples were annealed and then proton
irradiated to form the G-centre and characterized by
photoluminescence measurements. The temperature dependence of the emission and
the behaviour of the G-centre with post proton annealing were investigated and results are compared with
identical implants in control samples of bulk silicon. Overall, we find that
the optically active G-centre can be up to 300%
brighter and has better survivability over a wider process window in SOI than
in bulk silicon.
Keywords: G-center; ion
implantation; photoluminescence; point-defect; SOI
ABSTRAK
Pusat kecacatan titik yang menyinar, Pusat G mula mendapat perhatian apabila terdapat laporan mengatakan ia dapat menghasilkan laser di dalam silikon. Tambahan lagi, pemindahan teknologi daripada silikon pukal ke silikon-atas-penebat (SOI) adalah keperluan penting untuk kemajuan laser dan penguat optik daripada silikon. Kami melaporkan tentang janaan cahaya yang cekap, Pusat G di dalam substrat SOI dengan menggunakan teknik implantasi karbon ion dan penyinaran proton. Selepas penempelan karbon, sampel telah disepuh-lindap dan disinari dengan proton bertenaga tinggi untuk menghasilkan Pusat G yang kemudiannya akan dicirikan menggunakan kaedah pengukuran fotoluminesens. Sampel yang mempunyai keamatan cahaya paling tinggi daripada SOI dan silikon pukal dipilih untuk disepuh-lindap sekali lagi untuk mengkaji kesan pembentukannya, dan pemusnahan pusat kecacatan titik. Secara keseluruhan,
kami merumuskan pusat kecacatan titik yang menyinar Pusat G dapat menyinar pada lebih 300% dan mempunyai kemandirian yang lebih baik di dalam SOI berbanding silikon pukal.
Kata kunci: Fotoluminesen; kecacatan titik; penempelan ion: pusat G; SOI
REFERENCES
Bagiah, H., Halim, S.A., Chen, S.K.,
Lim, K.P. & Awang Kechik,
M.M. 2016. Effects of rare earth nanoparticles (M=Sm2O3,
Ho2O3, Nd2O3)
addition on the microstructure and superconducting transition of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ ceramics. Sains Malaysiana45(4): 643-651.
Bao, J., Tabbal, M., Kim, T., Charnvanichborikarn, S., Williams, J.S., Aziz, M.J. & Capasso, F. 2007. Point defect engineered Si sub-bandgap
light-emitting diode. Optics Express 15(11): 6727-6733.
Beaufils, C., Redjem,
W., Rousseau, E., Jacques, V., Kuznetsov, A.Y.,
Raynaud, C., Voisin, C., Benali,
A., Herzig, T., Pezzagna,
S., Meijer, J., Abbarchi, M. & Cassabois, G. 2018. Optical properties of an ensemble of
G-centers in silicon. Physical Review B 97(3): 035303.
Berhanuddin, D.D., Lourenço,
M.A., Gwilliam, R.M. & Homewood, K.P. 2018. The
effect of temperature to the formation of optically active point-defect
complex, the carbon g-centre in pre-amorphised and non-amorphised silicon. IOP Conference Series: Materials Science and Engineering 384(1):
012062.
Berhanuddin, D.D., Lourenço,
M.A., Gwilliam, R.M. & Homewood, K.P. 2016.
Photoluminescence study of the optically active, G-centre on pre-amorphised silicon by utilizing ion
implantation technique. IEEE International Conference on Semiconductor
Electronics (ICSE2016). pp. 256-259.
Berhanuddin, D.D., Lourenço,
M.A., Gwilliam, R.M. & Homewood, K.P. 2012a.
Co-implantation of carbon and protons: An integrated silicon device technology
compatible method to generate the lasing G-Center. Advanced Functional
Materials 22(13): 2709-2712.
Berhanuddin, D.D., Lourenço,
M.A., Jeynes, C., Milosavljević,
M., Gwilliam, R.M. & Homewood, K.P. 2012b.
Structural analysis of silicon co-implanted with carbon and high energy proton
for the formation of the lasing G-centre. Journal
of Applied Physics 112(10): 103110.
Boyraz, O. & Jalali,
B. 2004. Demonstration of a silicon raman laser. Optics
Express 12(21): 5269.
Cloutier, S.G., Kossyrev,
P.A. & Xu, J. 2005. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Materials 4(12):
887-891.
Davies, G. 1989. The optical-properties of luminescence-centers in
silicon. Physics Reports-Review Section of Physics Letters 176(3-4):
83-188.
Homewood, K.P. & Lourenço, M.A. 2005. Light form silicon via dislocation
loops. Materials Today 8(1): 34-39.
Jurbergs, D., Rogojina, E., Mangolini,
L. & Kortshagen, U. 2006. Silicon nanocrystals
with ensemble quantum yields exceeding 60%. Applied Physics Letters 88(23):
233116.
Kittler, M., Reiche, M., Arguirov, T.,
Seifert, W. & Yu, X. 2005. Dislocation engineering for a silicon-based
light emitter at 1.5 μm. IEEE International
Electron Devices Meeting, IEDM Technical Digest. doi:
10.1109/IEDM.2005.1609533.
Lourenço, M.A., Milosavljević, M., Gorin, A.G., Gwilliam, R.M. &
Homewood, K.P. 2016. Super-enhancement of 1.54 μm emission from erbium codoped with oxygen in
silicon-on-insulator. Scientific Reports 5: 37501.
Lourenço, M.A., Milosavljević, M., Galata,
S., Siddiqui, M.S.A., Shao, G., Gwilliam, R.M. &
Homewood, K.P. 2005. Silicon-based light emitting devices. Vacuum 78:
551-556.
Murata, K., Yasutake, Y., Nittoh, K., Fukatsu, S. & Miki, K. 2011. High-density G-centers,
light-emitting point defects in silicon crystal. AIP Advances 1(3):
032125.
Nakamura, M.
& Nagai, S. 2002. Influence of high-energy electron irradiation on the
formation and annihilation of the photoluminescence W center and the center‘s origin in a proton-implanted silicon crystal.
Physical Review B 66(15): 155204.
Ng, W.L., Lourenço, M.A., Gwilliam, R.M., Ledain, S., Shao, G. & Homewood, K.P. 2001. An
efficient room-temperature silicon-based light-emitting diode. Nature 410(6825):
192- 194.
Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G. & Priolo, F. 2000.
Optical gain in silicon nanocrystals. Nature 408(6811): 440-444.
Rong, H., Jones, R., Liu, A., Cohen, O., Hak,
D., Fang, A. & Paniccia, M. 2005. A
continuous-wave Raman silicon laser. Nature 433(7027): 725-728.
Rotem, E., Shainline, J.M. & Xu, J.M.
2007. Enhanced photoluminescence from nanopatterned carbon-rich silicon grown by solid-phase epitaxy. Applied Physics Letters 91(5):
051127.
Walters,
R.J., Bourianoff, G.I. & Atwater, H.A. 2005.
Field-effect electroluminescence in silicon nanocrystals. Nature Materials 4(2):
143-146.
Webb, R.
2001. Surrey University Sputter Profile Resolution from Energy deposition,
SUSPRE. 2001: IBC, University of Surrey.
Yukhnevich, A.V. 2007. Towards a silicon laser based on emissive structural
defects. Solid-State Electronics 51(3): 489-492.
*Corresponding author; email:
dduryha@ukm.edu.my
|