Sains Malaysiana 48(6)(2019): 1251–1257

http://dx.doi.org/10.17576/jsm-2019-4806-12

 

G-Centre Formation and Behaviour in a Silicon on Insulator Platform by Carbon Ion Implantation and Proton Irradiation

(Pembentukan Pusat-G dan Kelakuan dalam Silikon Pentas Penebat Implantasi Ion Karbon dan Sinaran Proton)

 

D.D. BERHANUDDIN1,2*, N.E.A. RAZAK1, M.A. LOURENÇO2,3, B.Y. MAJLIS1 & K.P. HOMEWOOD2,3,4

 

1Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Advanced Technology Institute, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

 

3Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom

 

4School of Materials Science & Engineering, Hubei University, Wuhan 430062, P.R. China

 

Received: 31 December 2018/Accepted: 26 February 2019

 

ABSTRACT

The interest in the G-centre is driven by reports that it can lase in silicon. To further this, the transfer of this technology from bulk silicon to a silicon-on-insulator (SOI) platform is an essential requirement to progress to lasing and optical amplification on silicon. We report on the efficient generation of the lasing G-centre in SOI substrates by proton irradiation of carbon ion implants. Following carbon implantation samples were annealed and then proton irradiated to form the G-centre and characterized by photoluminescence measurements. The temperature dependence of the emission and the behaviour of the G-centre with post proton annealing were investigated and results are compared with identical implants in control samples of bulk silicon. Overall, we find that the optically active G-centre can be up to 300% brighter and has better survivability over a wider process window in SOI than in bulk silicon.

 

Keywords: G-center; ion implantation; photoluminescence; point-defect; SOI

 

ABSTRAK

Pusat kecacatan titik yang menyinar, Pusat G mula mendapat perhatian apabila terdapat laporan mengatakan ia dapat menghasilkan laser di dalam silikon. Tambahan lagi, pemindahan teknologi daripada silikon pukal ke silikon-atas-penebat (SOI) adalah keperluan penting untuk kemajuan laser dan penguat optik daripada silikon. Kami melaporkan tentang janaan cahaya yang cekap, Pusat G di dalam substrat SOI dengan menggunakan teknik implantasi karbon ion dan penyinaran proton. Selepas penempelan karbon, sampel telah disepuh-lindap dan disinari dengan proton bertenaga tinggi untuk menghasilkan Pusat G yang kemudiannya akan dicirikan menggunakan kaedah pengukuran fotoluminesens. Sampel yang mempunyai keamatan cahaya paling tinggi daripada SOI dan silikon pukal dipilih untuk disepuh-lindap sekali lagi untuk mengkaji kesan pembentukannya, dan pemusnahan pusat kecacatan titik. Secara keseluruhan, kami merumuskan pusat kecacatan titik yang menyinar Pusat G dapat menyinar pada lebih 300% dan mempunyai kemandirian yang lebih baik di dalam SOI berbanding silikon pukal.

 

Kata kunci: Fotoluminesen; kecacatan titik; penempelan ion: pusat G; SOI

REFERENCES

Bagiah, H., Halim, S.A., Chen, S.K., Lim, K.P. & Awang Kechik, M.M. 2016. Effects of rare earth nanoparticles (M=Sm2O3, Ho2O3, Nd2O3) addition on the microstructure and superconducting transition of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ ceramics. Sains Malaysiana45(4): 643-651.

Bao, J., Tabbal, M., Kim, T., Charnvanichborikarn, S., Williams, J.S., Aziz, M.J. & Capasso, F. 2007. Point defect engineered Si sub-bandgap light-emitting diode. Optics Express 15(11): 6727-6733.

Beaufils, C., Redjem, W., Rousseau, E., Jacques, V., Kuznetsov, A.Y., Raynaud, C., Voisin, C., Benali, A., Herzig, T., Pezzagna, S., Meijer, J., Abbarchi, M. & Cassabois, G. 2018. Optical properties of an ensemble of G-centers in silicon. Physical Review B 97(3): 035303.

Berhanuddin, D.D., Lourenço, M.A., Gwilliam, R.M. & Homewood, K.P. 2018. The effect of temperature to the formation of optically active point-defect complex, the carbon g-centre in pre-amorphised and non-amorphised silicon. IOP Conference Series: Materials Science and Engineering 384(1): 012062.

Berhanuddin, D.D., Lourenço, M.A., Gwilliam, R.M. & Homewood, K.P. 2016. Photoluminescence study of the optically active, G-centre on pre-amorphised silicon by utilizing ion implantation technique. IEEE International Conference on Semiconductor Electronics (ICSE2016). pp. 256-259.

Berhanuddin, D.D., Lourenço, M.A., Gwilliam, R.M. & Homewood, K.P. 2012a. Co-implantation of carbon and protons: An integrated silicon device technology compatible method to generate the lasing G-Center. Advanced Functional Materials 22(13): 2709-2712.

Berhanuddin, D.D., Lourenço, M.A., Jeynes, C., Milosavljević, M., Gwilliam, R.M. & Homewood, K.P. 2012b. Structural analysis of silicon co-implanted with carbon and high energy proton for the formation of the lasing G-centre. Journal of Applied Physics 112(10): 103110.

Boyraz, O. & Jalali, B. 2004. Demonstration of a silicon raman laser. Optics Express 12(21): 5269.

Cloutier, S.G., Kossyrev, P.A. & Xu, J. 2005. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Materials 4(12): 887-891.

Davies, G. 1989. The optical-properties of luminescence-centers in silicon. Physics Reports-Review Section of Physics Letters 176(3-4): 83-188.

Homewood, K.P. & Lourenço, M.A. 2005. Light form silicon via dislocation loops. Materials Today 8(1): 34-39.

Jurbergs, D., Rogojina, E., Mangolini, L. & Kortshagen, U. 2006. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters 88(23): 233116.

Kittler, M., Reiche, M., Arguirov, T., Seifert, W. & Yu, X. 2005. Dislocation engineering for a silicon-based light emitter at 1.5 μm. IEEE International Electron Devices Meeting, IEDM Technical Digest. doi: 10.1109/IEDM.2005.1609533.

Lourenço, M.A., Milosavljević, M., Gorin, A.G., Gwilliam, R.M. & Homewood, K.P. 2016. Super-enhancement of 1.54 μm emission from erbium codoped with oxygen in silicon-on-insulator. Scientific Reports 5: 37501.

Lourenço, M.A., Milosavljević, M., Galata, S., Siddiqui, M.S.A., Shao, G., Gwilliam, R.M. & Homewood, K.P. 2005. Silicon-based light emitting devices. Vacuum 78: 551-556.

Murata, K., Yasutake, Y., Nittoh, K., Fukatsu, S. & Miki, K. 2011. High-density G-centers, light-emitting point defects in silicon crystal. AIP Advances 1(3): 032125.

Nakamura, M. & Nagai, S. 2002. Influence of high-energy electron irradiation on the formation and annihilation of the photoluminescence W center and the center‘s origin in a proton-implanted silicon crystal. Physical Review B 66(15): 155204.

Ng, W.L., Lourenço, M.A., Gwilliam, R.M., Ledain, S., Shao, G. & Homewood, K.P. 2001. An efficient room-temperature silicon-based light-emitting diode. Nature 410(6825): 192- 194.

Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G. & Priolo, F. 2000. Optical gain in silicon nanocrystals. Nature 408(6811): 440-444.

Rong, H., Jones, R., Liu, A., Cohen, O., Hak, D., Fang, A. & Paniccia, M. 2005. A continuous-wave Raman silicon laser. Nature 433(7027): 725-728.

Rotem, E., Shainline, J.M. & Xu, J.M. 2007. Enhanced photoluminescence from nanopatterned carbon-rich silicon grown by solid-phase epitaxy. Applied Physics Letters 91(5): 051127.

Walters, R.J., Bourianoff, G.I. & Atwater, H.A. 2005. Field-effect electroluminescence in silicon nanocrystals. Nature Materials 4(2): 143-146.

Webb, R. 2001. Surrey University Sputter Profile Resolution from Energy deposition, SUSPRE. 2001: IBC, University of Surrey.

Yukhnevich, A.V. 2007. Towards a silicon laser based on emissive structural defects. Solid-State Electronics 51(3): 489-492.

 

*Corresponding author; email: dduryha@ukm.edu.my

 

 

 

previous