Sains Malaysiana 48(6)(2019): 1259–1265
http://dx.doi.org/10.17576/jsm-2019-4806-13
Refractive Index and
Sensing of Glucose Molarities determined using Au-Cr K-SPR at 670/785 nm
Wavelength
(Indeks
Biasan dan
Pengesanan Kemolaran Glukosa melalui Au-Cr K-SPR pada Panjang Gelombang 670/785 nm)
P. SUSTHITHA MENON1*, BUDI MULYANTI2, NUR AKMAR JAMIL1, CHANDRA WULANDARI3, HARBI SETYO NUGROHO3, GAN
SIEW MEI1, NOOR FAIZAH ZAINUL ABIDIN1, LILIK HASANAH3, ROER EKA PAWINANTO2 & DILLA DURYHA BERHANUDDIN1
1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Electrical
Engineering Education, Universitas Pendidikan Indonesia (UPI), Bandung 40154 Jawa Barat, Indonesia
3Department of Physics
Education, Universitas Pendidikan Indonesia (UPI), Bandung 40154 Jawa Barat, Indonesia
Received: 2 January 2019/Accepted:
28 February 2019
ABSTRACT
In this paper, we
determine the optical refractive indices of different molarities of glucose
using nano-laminated gold/chromium (Au-Cr) thin film
via Kretschmann-based Surface Plasmon Resonance (K-SPR)
sensing with angular interrogation. The nano-laminated
Au-Cr K-SPR sensor detects the glucose presence in low- and
high-concentration of 4-12 mmol/L and 55-277 mmol/L, respectively, under the exposure of 670 nm and 785
nm optical wavelengths. The experimental results showed that the minimum limit
of detection (LOD) of Au-Cr K-SPR is 4 mmol/L
and the glucose sensor sensitivities are in average of 3.41 o/M
and 2.73o/M at 670 nm and 785 nm optical wavelength,
respectively. Stable sensitivity for each concentration also shown from the sensorgram results, indicates the stable performance of nano-laminated Au-Cr SPR sensor to detect glucose in
the range from mmol/L up to dmol/L.
Values of refractive indices for glucose molarities obtained are 1.33187 (4 mmol/L) and 1.3191 (4 mmol/L) at
670 and 785 nm wavelength, respectively. These RI values
are beneficial for numerical simulation of glucose sensors using nano-laminated Au-Cr thin films which have been reported
for the first time. The sensor can be eventually deployed in integrated
photonic sensing devices comprising of multiple analyte detection for lab-on-chip (LoC) and point-of care (PoC)
applications.
Keywords: Angular
interrogation; glucose sensor; gold/chromium; Kretschmann; nano-laminated; refractive index; surface plasmon resonance
ABSTRAK
Dalam kajian ini,
indeks biasan optik
daripada kemolaran glukosa yang berbeza ditentukan dengan menggunakan filem nipis nano emas/kromium (Au-Cr) melalui sensor
resonan plasmon permukaan berasaskan konfigurasi Kretschmann (K-SPR)
dengan interogasi
sudut. Sensor Au-Cr K-SPR berlapis nano mengesan
kehadiran glukosa
dalam kepekatan rendah dan tinggi
iaitu 4-12 mmol/L
dan 55-277 mmol/L masing-masing di bawah pendedahan panjang gelombang optik 670 nm dan 785 nm. Keputusan uji kaji menunjukkan
bahawa had minimum pengesanan
(LOD)
Au-Cr K-SPR adalah 4 mmol/L dan kepekaan sensor glukosa
adalah secara purata sebanyak
3.41°/M dan 2.73°/M, masing-masing
pada panjang
gelombang 670 nm dan 785 nm.
Pengesanan yang stabil daripada sensorgram untuk setiap kepekatan
glukosa menunjukkan
prestasi sensor Au-Cr SPR nano-lamina untuk mengesan glukosa dalam lingkungan dari mmol/L sehingga
dmol/L. Nilai
indeks biasan (RI)
untuk kemolaran glukosa yang diperoleh ialah 1.33187 (4 mmol/L) dan 1.3191 (4 mmol/L) pada panjang gelombang
670 dan 785 nm. Nilai
RI
ini bermanfaat untuk simulasi berangka sensor glukosa menggunakan filem tipis nano-lamina Au-Cr yang dilaporkan
buat pertama
kali. Sensor ini akhirnya boleh
digunakan dalam
peranti terintegrasi fotonik yang bersepadu yang
terdiri daripada pelbagai pengesanan analit untuk aplikasi
makmal-atas-cip (LoC) dan
point-of care (PoC).
Kata kunci: Emas/kromium; indeks biasan; interograsi sudut; konfigurasi Kretschmann; nano-lamina; resonan plasmon permukaan; sensor glukosa
REFERENCES
Badugu, R., Lakowicz,
J.R. & Geddes, C.D. 2015. Fluorescence sensors for monosaccharides based on
the 6-methylquinolinium nucleus and boronic acid
moiety: Potential application to ophthalmic diagnostics. Talanta 65(2005): 762-768.
Bowman, P., Flanagan, S.E.
& Hattersley, A.T. 2018. Review article future roadmaps for precision
medicine applied to diabetes: Rising to the challenge of heterogeneity. J.
Diabetes Res. 2018: 1-12.
Bratlie, K.M., York, R.L., Invernale, M.A., Langer, R. & Anderson, D.G. 2012.
Materials for diabetes therapeutics. Adv. Heal. Mater 1(3): 267-284.
Breault-Turcot, J., Poirier-Richard, H.P.,
Couture, M., Pelechacz, D. & Masson, J.F. 2015.
Single chip SPR and fluorescent ELISA assay of prostrate specific antigen. Lab on a Chip 15: 4433-4440.
Chao, C.Y., Fung, W. & Guo, J. 2006. Polymer microring resonators for biochemical sensing applications. IEEE J. of Selected Topics
in Quantum Electronics 12(1): 134-142.
Dovc, K., Cargnelutti,
K., Sturm, A., Selb, J. & Bratina,
N. 2018. Continuous glucose monitoring use and glucose variability in
pre-school children with type 1 diabetes. Diabetes Res. Clin. Pract. 147(2019): 76-80.
Fang, H., Kaur, G. & Wang,
B. 2004. Progress in boronic acid-based fluorescent
glucose sensors. J. Fluoresc. 14(5): 481-489.
Gan, S.M.,
Menon, P.S., Mohamad, N.R., Jamil, N.A. & Majlis, B.Y. 2019.
FDTD simulation of Kretschmann based Cr-Ag-ITO SPR for refractive
index sensor. Materials Today: Proceedings 7(2): 668-674.
Gan, S.M., Mohamad, N.R., Jamil,
N.A., Majlis, B.Y. & Menon, P.S.
2018. Pengoptimuman sensor resonans
plasmon permukaan berdasarkan Kretschmann dengan Kaedah Taguchi. Sains Malaysiana47(10):
2565-2571.
Haroon, H., Shaari,
S., Menon, P.S., Razak, H.A. & Bidin, M. 2013. Application of statistical method to
investigate the effects of design parameters on the performance of microring resonator channel dropping filter. Int. J. Numer. Model 26(2013): 670-679.
Hsieh, H.V., Pfeiffer, Z.A.,
Amiss, T.J., Sherman, D.B. & Pitner, J.B. 2004.
Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein. Biosensors and
Bioelectronics 19(2004): 653-660.
Iacono, F., Poskus,
E., Trabucchi, A., Guerra, L.L., Faccinetti,
N.I. & Valdez, S.N. 2012. Surface plasmon resonance reveals a different pattern of proinsulin autoantibodies
concentration and affinity in diabetic patients. PLoS One 7(3): 1-7.
International Diabetes
Federation https://www.idf.org. Accessed on 29 December 2018.
Jamil, N.A., Menon, P.S.,
Gan, S.M. & Majlis,
B.Y. 2018a. Sensitivity enhancement of urea biosensor based on surface
plasmon resonance and Kretschmann
configuration with graphene-MoS2 hybrid structure. Sains
Malaysiana47(5): 1033-1038.
Jamil, N.A., Menon,
P.S., Shaari, S., Mohamed, M.A., Majils, B.Y. 2018b. Taguchi optimization
of surface plasmon resonance-kretschmann biosensor using FDTD. IEEE
International Conference on Semiconductor Electronics, Proceedings,
ICSE. doi: 10.1109/SMELEC.2018.8481216.
Jamil, N.A., Menon,
P.S., Said, F.A., Tarumaraja, K.A., Mei, G.S. & Majlis, B.Y.
2017a. Graphene-based surface plasmon resonance urea biosensor using
Kretschmann configuration. Proceedings of the 2017 IEEE Regional
Symposium on Micro and Nanoelectronics, RSM 2017. pp. 112-115.
doi:10.1109/RSM.2017.8069122.
Jamil, N.A.B., Menon,
P.S., Mei, G.S., Shaari, S. & Majlis, B.Y. 2017b. Urea biosensor
utilizing graphene-MoS2 and Kretschmann-based SPR. TENCON 2017
- 2017 IEEE Region 10 Conference. pp. 1973-1977. doi:10.1109/TENCON.2017.8228183.
Maheran, A.H.A., Menon, P. S.,
Ahmad, I. & Shaari, S. 2014. Effect
of Halo structure variations on the threshold voltage of a 22 nm
gate length NMOS transistor. Mater. Sci. Semicond.
Process 17(2014): 155-161.
Makaram, P., Owens, D. & Aceros, J. 2014. Trends in nanomaterial-based non-invasive
diabetes. Diagnostics 4(2014): 27-46.
Massey, C.N., Feig,
E.H., Duque-serrano, L., Wexler, D., Tedlie, J. &
Huffman, J.C. 2018. Well-being interventions for individuals with diabetes: A
systematic review. Diabetes Res. Clin. Pract. 147(2019): 118-133.
Menon, P.S., Said, F.A., Gan, S.M., Berhanuddin,
D.D., Umar, A.A., Shaari, S. & Majlis, B.Y. 2018. Urea and creatinine detection on nano- laminated gold thin film using Kretschmann-
based surface plasmon resonance biosensor. PLoS ONE 13(7): 1-14.
Menon, P.S., Kandiah, K., Ehsan, A.A. & Shaari,
S. 2010. Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As
interdigitated lateral PIN photodiode model based on spin-on chemical
fabrication methodology. Int. J. Numer. Model 24(5):
465-477.
Miyazaki, C.M., Shimizu,
F.M., Salazar, J.R.M., Oliveira Jr, O.N. & Ferreira, M. 2017. Surface plasmon resonance biosensor for enzymatic detection of
small analytes. Nanotechnology 28(2017):
145501-145507.
Mohamad,
N.R., Gan, S.M., Jamil, N.A., Majlis, B.Y. & Menon, P.S. 2019.
Influence of ultrathin chromium adhesion layer on different metal
thicknesses of SPR-based sensor using FDTD. Materials Today:
Proceedings 7(2): 732-737.
Mulyanti, B., Hasanah, L., Hariyadi, T., Novitasari, R., Pantjawati,
A.B., Yuwono, H. & Khairurrijal.
2015. The influence of glucose concentration to resonant wavelength
shift of polymer-based microring resonator.
Adv. Mat. Res. 1112: 32-36.
Nathan, D.M. & Edic, D. 2010. The diabetes control and complications
trial/epidemiology of diabetes interventions and complications study at 30
years: Overview. Diabetes Care 37(2014): 9-16.
National Diabetes
(NADI). http://www.diabetesmalaysia.com. my. Accessed
on 21-Dec-2018.
Said, F.A., Menon, P.S., Rajendran, V., Shaari, S.
& Majlis, B.Y. 2017. Investigation of
graphene-on-metal substrates for SPR-based sensor using finite-difference time
domain. IET Nanobiotechnology11(8): 981-986.
Said, F.A., Menon, P.S., Nawi, M.N., Zain, A.R., Jalar,
A. & Majlis, B.Y. 2016. Copper-graphene SPR-based
biosensor for urea detection. IEEE International Conference on Semiconductor
Electronics (ICSE). pp. 264-267.
Said, F.A., Menon, P.S., Shaari, S. & Majlis,
B.Y. 2015. FDTD analysis on geometrical parameters of bimetallic localized
surface plasmon resonance-based sensor and detection
of alcohol in water. Int. J. Simul. Syst. Sci. Technol. 16(4): 6.1-6.5.
Angharad, S., Simpson, S. &
Wood, A. 2016. New and Emerging Non-Invasive Glucose Monitoring Technologies.
United Kingdom: University of Birmingham.
Tarumaraja, K.A., Susthitha Menon, P.N., Visvanathan, V., Fairus Atida, S., Nur Akmar, J., Abang Annuar, Ehsan, Sahbudin, S., Burhanuddin Yeop, M. & Azman Jalar @ Jalil. 2016. FDTD numerical analysis of SPR sensing using graphene-based photonic
crystal. IEEE International Conference on Semiconductor Electronics (ICSE) 2016(9):
79-82.
Wang, C., Neil, D.L.
& Home, P. 2018. 2020 vision - An overview of prospects for diabetes
management and prevention in the next decade. Diabetes Res. Clin. Pract. 143(2018):
101-112.
Wang, D.S. & Fan,
S.K. 2016. Microfluidic surface plasmon resonance
sensors: From principles to point-of-care applications. Sensors 16(8):
1175.
Yetisen, A.K., Butt, H., Volpatti, L.R., Sheldon, K.S., Kwang,
S. & Hyun, S. 2015. Photonic hydrogel sensors. Biotechnol.
Adv. 34(3): 250-271.
Yoo, E.H. & Lee, S.Y.
2010. Glucose biosensors: An overview of use in clinical practice. Sensors 10(2010):
4558-4576.
Yorek, M., Malik, R.A., Calcutt, N.A. & Vinik, A.
2018. Editorial diabetic neuropathy: New insights to early diagnosis and
treatments. J. Diabetes Res. 2018: 5378439.
*Corresponding
author; email: susi@ukm.edu.my
|