Sains Malaysiana 48(6)(2019): 1259–1265

http://dx.doi.org/10.17576/jsm-2019-4806-13

 

Refractive Index and Sensing of Glucose Molarities determined using Au-Cr K-SPR at 670/785 nm Wavelength

(Indeks Biasan dan Pengesanan Kemolaran Glukosa melalui Au-Cr K-SPR pada Panjang Gelombang 670/785 nm)

 

P. SUSTHITHA MENON1*, BUDI MULYANTI2, NUR AKMAR JAMIL1, CHANDRA WULANDARI3, HARBI SETYO NUGROHO3, GAN SIEW MEI1, NOOR FAIZAH ZAINUL ABIDIN1, LILIK HASANAH3, ROER EKA PAWINANTO2 & DILLA DURYHA BERHANUDDIN1

 

1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Electrical Engineering Education, Universitas Pendidikan Indonesia (UPI), Bandung 40154 Jawa Barat, Indonesia

 

3Department of Physics Education, Universitas Pendidikan Indonesia (UPI), Bandung 40154 Jawa Barat, Indonesia

 

Received: 2 January 2019/Accepted: 28 February 2019

 

ABSTRACT

In this paper, we determine the optical refractive indices of different molarities of glucose using nano-laminated gold/chromium (Au-Cr) thin film via Kretschmann-based Surface Plasmon Resonance (K-SPR) sensing with angular interrogation. The nano-laminated Au-Cr K-SPR sensor detects the glucose presence in low- and high-concentration of 4-12 mmol/L and 55-277 mmol/L, respectively, under the exposure of 670 nm and 785 nm optical wavelengths. The experimental results showed that the minimum limit of detection (LOD) of Au-Cr K-SPR is 4 mmol/L and the glucose sensor sensitivities are in average of 3.41 o/M and 2.73o/M at 670 nm and 785 nm optical wavelength, respectively. Stable sensitivity for each concentration also shown from the sensorgram results, indicates the stable performance of nano-laminated Au-Cr SPR sensor to detect glucose in the range from mmol/L up to dmol/L. Values of refractive indices for glucose molarities obtained are 1.33187 (4 mmol/L) and 1.3191 (4 mmol/L) at 670 and 785 nm wavelength, respectively. These RI values are beneficial for numerical simulation of glucose sensors using nano-laminated Au-Cr thin films which have been reported for the first time. The sensor can be eventually deployed in integrated photonic sensing devices comprising of multiple analyte detection for lab-on-chip (LoC) and point-of care (PoC) applications.

 

Keywords: Angular interrogation; glucose sensor; gold/chromium; Kretschmann; nano-laminated; refractive index; surface plasmon resonance

 

ABSTRAK

Dalam kajian ini, indeks biasan optik daripada kemolaran glukosa yang berbeza ditentukan dengan menggunakan filem nipis nano emas/kromium (Au-Cr) melalui sensor resonan plasmon permukaan berasaskan konfigurasi Kretschmann (K-SPR) dengan interogasi sudut. Sensor Au-Cr K-SPR berlapis nano mengesan kehadiran glukosa dalam kepekatan rendah dan tinggi iaitu 4-12 mmol/L dan 55-277 mmol/L masing-masing di bawah pendedahan panjang gelombang optik 670 nm dan 785 nm. Keputusan uji kaji menunjukkan bahawa had minimum pengesanan (LOD) Au-Cr K-SPR adalah 4 mmol/L dan kepekaan sensor glukosa adalah secara purata sebanyak 3.41°/M dan 2.73°/M, masing-masing pada panjang gelombang 670 nm dan 785 nm. Pengesanan yang stabil daripada sensorgram untuk setiap kepekatan glukosa menunjukkan prestasi sensor Au-Cr SPR nano-lamina untuk mengesan glukosa dalam lingkungan dari mmol/L sehingga dmol/L. Nilai indeks biasan (RI) untuk kemolaran glukosa yang diperoleh ialah 1.33187 (4 mmol/L) dan 1.3191 (4 mmol/L) pada panjang gelombang 670 dan 785 nm. Nilai RI ini bermanfaat untuk simulasi berangka sensor glukosa menggunakan filem tipis nano-lamina Au-Cr yang dilaporkan buat pertama kali. Sensor ini akhirnya boleh digunakan dalam peranti terintegrasi fotonik yang bersepadu yang terdiri daripada pelbagai pengesanan analit untuk aplikasi makmal-atas-cip (LoC) dan point-of care (PoC).

 

Kata kunci: Emas/kromium; indeks biasan; interograsi sudut; konfigurasi Kretschmann; nano-lamina; resonan plasmon permukaan; sensor glukosa

REFERENCES

Badugu, R., Lakowicz, J.R. & Geddes, C.D. 2015. Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: Potential application to ophthalmic diagnostics. Talanta 65(2005): 762-768.

Bowman, P., Flanagan, S.E. & Hattersley, A.T. 2018. Review article future roadmaps for precision medicine applied to diabetes: Rising to the challenge of heterogeneity. J. Diabetes Res. 2018: 1-12.

Bratlie, K.M., York, R.L., Invernale, M.A., Langer, R. & Anderson, D.G. 2012. Materials for diabetes therapeutics. Adv. Heal. Mater 1(3): 267-284.

Breault-Turcot, J., Poirier-Richard, H.P., Couture, M., Pelechacz, D. & Masson, J.F. 2015. Single chip SPR and fluorescent ELISA assay of prostrate specific antigen. Lab on a Chip 15: 4433-4440.

Chao, C.Y., Fung, W. & Guo, J. 2006. Polymer microring resonators for biochemical sensing applications. IEEE J. of Selected Topics in Quantum Electronics 12(1): 134-142.

Dovc, K., Cargnelutti, K., Sturm, A., Selb, J. & Bratina, N. 2018. Continuous glucose monitoring use and glucose variability in pre-school children with type 1 diabetes. Diabetes Res. Clin. Pract. 147(2019): 76-80.

Fang, H., Kaur, G. & Wang, B. 2004. Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc. 14(5): 481-489.

Gan, S.M., Menon, P.S., Mohamad, N.R., Jamil, N.A. & Majlis, B.Y. 2019. FDTD simulation of Kretschmann based Cr-Ag-ITO SPR for refractive index sensor. Materials Today: Proceedings 7(2): 668-674.

Gan, S.M., Mohamad, N.R., Jamil, N.A., Majlis, B.Y. & Menon, P.S. 2018. Pengoptimuman sensor resonans plasmon permukaan berdasarkan Kretschmann dengan Kaedah Taguchi. Sains Malaysiana47(10): 2565-2571.

Haroon, H., Shaari, S., Menon, P.S., Razak, H.A. & Bidin, M. 2013. Application of statistical method to investigate the effects of design parameters on the performance of microring resonator channel dropping filter. Int. J. Numer. Model 26(2013): 670-679.

Hsieh, H.V., Pfeiffer, Z.A., Amiss, T.J., Sherman, D.B. & Pitner, J.B. 2004. Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein. Biosensors and Bioelectronics 19(2004): 653-660.

Iacono, F., Poskus, E., Trabucchi, A., Guerra, L.L., Faccinetti, N.I. & Valdez, S.N. 2012. Surface plasmon resonance reveals a different pattern of proinsulin autoantibodies concentration and affinity in diabetic patients. PLoS One 7(3): 1-7.

International Diabetes Federation https://www.idf.org. Accessed on 29 December 2018.

Jamil, N.A., Menon, P.S., Gan, S.M. & Majlis, B.Y. 2018a. Sensitivity enhancement of urea biosensor based on surface plasmon resonance and Kretschmann configuration with graphene-MoS2 hybrid structure. Sains Malaysiana47(5): 1033-1038.

Jamil, N.A., Menon, P.S., Shaari, S., Mohamed, M.A., Majils, B.Y. 2018b. Taguchi optimization of surface plasmon resonance-kretschmann biosensor using FDTD. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE. doi: 10.1109/SMELEC.2018.8481216.

Jamil, N.A., Menon, P.S., Said, F.A., Tarumaraja, K.A., Mei, G.S. & Majlis, B.Y. 2017a. Graphene-based surface plasmon resonance urea biosensor using Kretschmann configuration. Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics, RSM 2017. pp. 112-115. doi:10.1109/RSM.2017.8069122.

Jamil, N.A.B., Menon, P.S., Mei, G.S., Shaari, S. & Majlis, B.Y. 2017b. Urea biosensor utilizing graphene-MoS2 and Kretschmann-based SPR. TENCON 2017 - 2017 IEEE Region 10 Conference. pp. 1973-1977. doi:10.1109/TENCON.2017.8228183.

Maheran, A.H.A., Menon, P. S., Ahmad, I. & Shaari, S. 2014. Effect of Halo structure variations on the threshold voltage of a 22 nm gate length NMOS transistor. Mater. Sci. Semicond. Process 17(2014): 155-161.

Makaram, P., Owens, D. & Aceros, J. 2014. Trends in nanomaterial-based non-invasive diabetes. Diagnostics 4(2014): 27-46.

Massey, C.N., Feig, E.H., Duque-serrano, L., Wexler, D., Tedlie, J. & Huffman, J.C. 2018. Well-being interventions for individuals with diabetes: A systematic review. Diabetes Res. Clin. Pract. 147(2019): 118-133.

Menon, P.S., Said, F.A., Gan, S.M., Berhanuddin, D.D., Umar, A.A., Shaari, S. & Majlis, B.Y. 2018. Urea and creatinine detection on nano- laminated gold thin film using Kretschmann- based surface plasmon resonance biosensor. PLoS ONE 13(7): 1-14.

Menon, P.S., Kandiah, K., Ehsan, A.A. & Shaari, S. 2010. Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology. Int. J. Numer. Model 24(5): 465-477.

Miyazaki, C.M., Shimizu, F.M., Salazar, J.R.M., Oliveira Jr, O.N. & Ferreira, M. 2017. Surface plasmon resonance biosensor for enzymatic detection of small analytes. Nanotechnology 28(2017): 145501-145507.

Mohamad, N.R., Gan, S.M., Jamil, N.A., Majlis, B.Y. & Menon, P.S. 2019. Influence of ultrathin chromium adhesion layer on different metal thicknesses of SPR-based sensor using FDTD. Materials Today: Proceedings 7(2): 732-737.

Mulyanti, B., Hasanah, L., Hariyadi, T., Novitasari, R., Pantjawati, A.B., Yuwono, H. & Khairurrijal. 2015. The influence of glucose concentration to resonant wavelength shift of polymer-based microring resonator. Adv. Mat. Res. 1112: 32-36.

Nathan, D.M. & Edic, D. 2010. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 37(2014): 9-16.

National Diabetes (NADI). http://www.diabetesmalaysia.com. my. Accessed on 21-Dec-2018.

Said, F.A., Menon, P.S., Rajendran, V., Shaari, S. & Majlis, B.Y. 2017. Investigation of graphene-on-metal substrates for SPR-based sensor using finite-difference time domain. IET Nanobiotechnology11(8): 981-986.

Said, F.A., Menon, P.S., Nawi, M.N., Zain, A.R., Jalar, A. & Majlis, B.Y. 2016. Copper-graphene SPR-based biosensor for urea detection. IEEE International Conference on Semiconductor Electronics (ICSE). pp. 264-267.

Said, F.A., Menon, P.S., Shaari, S. & Majlis, B.Y. 2015. FDTD analysis on geometrical parameters of bimetallic localized surface plasmon resonance-based sensor and detection of alcohol in water. Int. J. Simul. Syst. Sci. Technol. 16(4): 6.1-6.5.

Angharad, S., Simpson, S. & Wood, A. 2016. New and Emerging Non-Invasive Glucose Monitoring Technologies. United Kingdom: University of Birmingham.

Tarumaraja, K.A., Susthitha Menon, P.N., Visvanathan, V., Fairus Atida, S., Nur Akmar, J., Abang Annuar, Ehsan, Sahbudin, S., Burhanuddin Yeop, M. & Azman Jalar @ Jalil. 2016. FDTD numerical analysis of SPR sensing using graphene-based photonic crystal. IEEE International Conference on Semiconductor Electronics (ICSE) 2016(9): 79-82.

Wang, C., Neil, D.L. & Home, P. 2018. 2020 vision - An overview of prospects for diabetes management and prevention in the next decade. Diabetes Res. Clin. Pract. 143(2018): 101-112.

Wang, D.S. & Fan, S.K. 2016. Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications. Sensors 16(8): 1175.

Yetisen, A.K., Butt, H., Volpatti, L.R., Sheldon, K.S., Kwang, S. & Hyun, S. 2015. Photonic hydrogel sensors. Biotechnol. Adv. 34(3): 250-271.

Yoo, E.H. & Lee, S.Y. 2010. Glucose biosensors: An overview of use in clinical practice. Sensors 10(2010): 4558-4576.

Yorek, M., Malik, R.A., Calcutt, N.A. & Vinik, A. 2018. Editorial diabetic neuropathy: New insights to early diagnosis and treatments. J. Diabetes Res. 2018: 5378439.

 

*Corresponding author; email: susi@ukm.edu.my

 

 

 

previous