Sains Malaysiana 48(9)(2019):
1927–1935
http://dx.doi.org/10.17576/jsm-2019-4809-14
Evaluation of the Human
Amniotic Membrane as a Scaffold for Periodontal Ligament Fibroblast Attachment
and Proliferation
(Penilaian Membran
Amnion Manusia sebagai Perancah untuk Pelekatan dan Pengembangbiakan Fibroblas
Ligamen Periodontal)
ASRAR ELAHI1, HASLINA TAIB2*, ZURAIRAH BERAHIM2, AHMAD AZLINA3 & SUZINA SHEIKH AB HAMID4
1Department
of Periodontics, College of Dentistry, Lahore Medical and Dental College, 53400,
Lahore, Pakistan
2Periodontics
Unit, School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang
Kerian, Kelantan Darul Naim, Malaysia
3Molecular
Biology, School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang
Kerian, Kelantan Darul Naim, Malaysia
4Tissue
Bank, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
Received: 20
November 2018/Accepted: 13 June 2019
ABSTRACT
This study was aimed at
evaluating the ability of the human amniotic membrane (HAM)
to act as a scaffold for the growth of the main cells in periodontal
regeneration, human periodontal ligament fibroblasts (HPDLFs).
The HAM has many biological properties that are suitable for
periodontal tissue regeneration such as low immunogenicity, anti-fibrosis,
anti-inflammation, and a rich extracellular matrix component. Commercially
available HPDLFs were seeded onto the HAM,
and the attachment and proliferation of the cells were observed
through scanning electron microscopy (SEM) and histological analysis.
Cell viability was assessed using the alamarBlue®
proliferation assay at days 1, 3, 7, 14 and 21. Histologically,
the HPDLFs
showed a monolayer to multilayer attachment onto the HAM from
day 1 to day 7. The SEM analysis demonstrated that the HPDLFs
had attached appropriately onto the HAM surface at day 1 to day 3,
and began overlapping at day 7, while maintaining their flat shape.
However, by days 14 and 21, there was an alteration in the morphology
of the cells, where they later became rounded. The proliferation
assay showed that the viability of the HPDLFs on the HAM had increased significantly
from day 1 to day 7 (p=0.012), but later showed significant
reduction at day 14 (p=0.002) and day 21 (p=0.005).
In conclusion, this study showed that the HAM was able to function well as a scaffold
for HPDLFs within 7 days, and thus, it can be a promising scaffold
for periodontal regeneration. However, the behaviour of the cells
in relation to the membrane over longer culture duration warrants
further investigation.
Keywords: Amniotic
membrane; periodontal fibroblasts; periodontal regeneration; scaffold
ABSTRAK
Kajian ini bertujuan
untuk menilai keupayaan membran amniotik manusia (HAM)
untuk bertindak sebagai perancah bagi pertumbuhan sel-sel utama dalam regenerasi
periodontal iaitu sel fibroblas ligamen periodontal manusia (HPDLFs). HAM mempunyai banyak ciri biologi yang sesuai untuk pertumbuhan
semula tisu periodontal seperti keimunogenan yang rendah, anti-fibrosis,
anti-keradangan dan kaya dengan komponen matriks luar sel. HPDLFs
yang tersedia secara komersial telah dibiakkan ke atas HAM,
dan pelekatan serta pengembangbiakan HPDLFs diperhatikan melalui
pemeriksaan mikroskop imbasan elektron (SEM) dan analisis histologi.
Daya tahan sel telah dinilai menggunakan ujian percambahan alamarBlue® pada hari 1, 3, 7, 14 dan 21. Secara histologi, HPDLFs
menunjukkan pelekatan ekalapisan kepada beberapa lapisan ke atas HAM daripada
hari pertama hingga ke-7. Analisis SEM menunjukkan bahawa HPDLFs
telah melekat dengan baik pada permukaan HAM pada hari pertama hingga
hari ke-3 dan mula bertindih pada hari ke-7, sambil mengekalkan bentuknya yang
rata. Bagaimanapun, pada hari ke-14 dan ke-21, terdapat perubahan pada
morfologi sel, dengan mereka kemudiannya menjadi bulat. Ujian percambahan
menunjukkan bahawa daya tahan sel HPDLFs pada HAM meningkat
dengan ketara daripada hari pertama hingga hari ke-7 (p=0.012) namun
kemudiannya menunjukkan penurunan yang ketara pada hari ke-14 (p=0.002)
dan hari ke-21 (p=0.005). Kesimpulannya, kajian ini menunjukkan bahawa HAM dapat
berfungsi dengan baik sebagai perancah untuk HPDLFs
dalam tempoh 7 hari, dengan itu mampu menjadi perancah untuk regenerasi
periodontal. Walau bagaimanapun, tingkah laku sel berhubung dengan membran ini
dalam tempoh yang lebih lama masih memerlukan kajian lanjut.
Kata kunci: Fibroblas periodontal; membran amnion; perancah;
pertumbuhan semula periodontal
REFERENCES
Adachi, K., Amemiya, T., Nakamura, T., Honjyo, K., Kumamoto, S.,
Yamamoto, T., Bentley, A.J., Fullwood, N.J., Kinoshita, S. & Kanamura, N.
2014. Human periodontal ligament cell sheets cultured on amniotic membrane
substrate. Oral Diseases 20: 582-590.
Amemiya, T., Honjo, K.I., Adachi, K., Nishigaki, M., Oseko, F.,
Yamamoto, T. & Kanamura, N. 2014. Immunohistochemical study of
periosteal-derived cell sheet cultured on amniotic membrane aiming at
periodontal tissue regeneration. Journal of Oral and Maxillofacial Surgery 72:
e176.
Barabino, S., Rolando, M., Bentivoglio, G., Mingari, C., Zanardi,
S., Bellomo, R. & Calabria, G. 2003. Role of amniotic membrane
transplantation for conjunctival reconstruction in ocular-cicatricial
pemphigoid. Ophthalmology 110(3): 474-480.
Causa, F., Netti, P.A. & Ambrosio, L. 2007. A multi-functional
scaffold for tissue regeneration: The need to engineer a tissue analogue. Biomaterials 28: 5093-5099.
Chau, D.Y., Brown, S.V., Mather, M.L., Hutter, V., Tint, N.L.,
Dua, H.S., Rose, F.R. & Ghaemmaghami, A.M. 2012. Tissue transglutaminase
(TG-2) modified amniotic membrane: A novel scaffold for biomedical
applications. Biomedical Materials 7(4): 045011.
Chen, Y.J., Chung, M.C., Jane Yao, C.C., Huang, C.H., Chang, H.H.,
Jeng, J.H. & Young, T.H. 2012. The effects of acellular amniotic membrane
matrix on osteogenic differentiation and ERK1/2 signaling in human dental
apical papilla cells. Biomaterials 33: 455-463.
Chopra, A. & Thomas, B.S. 2013. Amniotic Membrane: A novel
material for regeneration and repair. Journal of Biomimetics Biomaterials
and Tissue Engineering 18: 1-8.
Cooper, L.J., Kinoshita, S., German, M., Koizumi, N., Nakamura, T.
& Fullwood, N.J. 2005. An investigation into the composition of amniotic
membrane used for ocular surface reconstruction. Cornea 24: 722-729.
Fujisato, T., Tomihata, K., Tabata, Y., Iwamoto, Y., Burczak, K.
& Ikada, Y. 1999. Cross-linking of amniotic membranes. Journal of
Biomaterials Science. Polymer Edition 10(11): 1171-1181.
Garg, T., Singh, O., Arora, S. & Murthy, R. 2012. Scaffold: A
novel carrier for cell and drug delivery. Critical Review in Therapeutic
Drug Carrier Systems 29(1): 1-63.
Gholipourmalekabadi, M., Sameni, M., Radenkovic, D., Mozafari, M.,
Mossahebi-Mohammadi, M. & Seifalian, A.M. 2016. Decellularized human
amniotic membrane: How viable is it as a delivery system for human adipose
tissue-derived stromal cells? Cell Proliferation 49(1): 115-121.
Graham, H.K., Horn, M. & Trafford, A.W. 2008. Extracellular
matrix profiles in the progression to heart failure. European Young
Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiologica
(Oxford, England) 194(1): 3-21.
Honjo, K.I., Yamamoto, T., Oseko, F., Amemiya, T., Kita, M.,
Mazda, O. & Kanamura, N. 2014. Examination of bone differentiation for
human dental pulp-derived cells cultured on amniotic membrane. Journal of
Oral and Maxillofacial Surgery 72: 178-179.
Iwasaki, K., Komaki, M., Yokoyama, N., Tanaka, Y., Taki, A.,
Honda, I., Kimura, Y., Takeda, M., Akazawa, K., Oda, S., Izumi, Y. &
Morita, I. 2014. Periodontal regeneration using periodontal ligament stem
cell-transferred amnion. Tissue Engineering Part A 20: 693-704.
Kiernan, J.A. 2000. Formaldehyde, formalin, paraformaldehyde and
glutaraldehyde: What they are and what they do. Microscopy Today 8:
8-12.
Kim, Y.S., Shin, S.I., Kang, K.L., Chung, J.H., Herr, Y., Bae,
W.J. & Kim, E.C. 2012. Nicotine and lipopolysaccharide stimulate the
production of MMPs and prostaglandin E2 by hypoxia-inducible factor-1alpha
up-regulation in human periodontal ligament cells. Journal of Periodontal
Research 47(6): 719-728.
Kruse, F.E., Joussen, A.M., Rohrschneider, K., You, L., Sinn, B.,
Baumann, J. & Völcker, H.E. 2000. Cryopreserved human amniotic membrane for
ocular surface reconstruction. Graefe’s Archive for Clinical and
Experimental Ophthalmology 238(1): 68-75.
Kukacka, J., Prusa, R., Kotaska, K. & Pelouch, V. 2005. Matrix
metalloproteinases and their function in myocardium. Biomedical Papers 149(2):
225-236.
Lai, J.Y. 2014. Photo-cross-linking of amniotic membranes for
limbal epithelial cell cultivation. Material Science and Engineering. C,
Materials for Biological Applications 45: 313-319.
Lai, J.Y. & Ma, D.H. 2013. Glutaraldehyde cross-linking of
amniotic membranes affects their nanofibrous structures and limbal epithelial
cell culture characteristics. International Journal of Nanomedicine 8:
4157-4168.
Lai, J.Y., Wang, P.R., Luo, L.J. & Chen, S.T. 2014.
Stabilization of collagen nanofibers with L-lysine improves the ability of
carbodiimide cross-linked amniotic membranes to preserve limbal epithelial
progenitor cells. International Journal of Nanomedicine 9: 5117-5130.
Lai, J.Y., Lue, S.J., Cheng, H.Y. & Ma, D.H.K. 2013. Effect of
matrix nanostructure on the functionality of carbodiimide cross-linked amniotic
membranes as limbal epithelial cell scaffolds. Journal of Biomedical
Nanotechnology 9(12): 2048-2062.
Lee, S.B., Li, D.Q., Tan, D.T., Meller, D.C. & Tseng, S.C.
2000. Suppression of TGF-beta signaling in both normal conjunctival fibroblasts
and pterygial body fibroblasts by amniotic membrane. Current Eye Research 20(4):
325-334.
Lindner, D., Zietsch, C., Becher, P.M., Schulze, K., Schultheiss,
H.P., Tschope, C. & Westermann, D. 2012. Differential expression of matrix
metalloproteases in human fibroblasts with different origins. Biochemistry
Research International 2012: 875742.
Lisboa, R.A., Lisboa, F.A., de Castro Santos, G., Andrade, M.V.
& Cunha-Melo, J.R. 2009. Matrix metalloproteinase 2 activity decreases in
human periodontal ligament fibroblast cultures submitted to simulated
orthodontic force. In vitro Cellular and Development Biology. Animal 45(10):
614-621.
Litwiniuk, M. & Grzela, T. 2014. Amniotic membrane: New
concepts for an old dressing. Wound Repair and Regeneration 22: 451-456.
Ma, D.H., Lai, J.Y., Cheng, H.Y., Tsai, C.C. & Yeh, L.K. 2010.
Carbodiimide cross-linked amniotic membranes for cultivation of limbal
epithelial cells. Biomaterials 31(25): 6647-6658.
Malhotra, C. & Jain, A.K. 2014. Human amniotic membrane
transplantation: Different modalities of its use in opthalmology. World
Journal of Transplantation 4: 111-121.
Mamede, A.C., Carvalho, M.J., Abrantes, A.M., Laranjo, M., Maia,
C.J. & Botelho, M.F. 2012. Amniotic membrane: From structure and functions
to clinical applications. Cell and Tissue Research 349: 447-458.
Nanci, A. & Ten Cate, A.R. 2013. Ten Cate's Oral Histology:
Development, Structure, and Function. 8th edition. St. Louis:
Elsevier.
Nanci, A. & Bosshardt, D.D. 2006. Structure of periodontal
tissues in health and disease. Periodontology 2000 40: 11-28.
Niknejad, H. & Yazdanpanah, G. 2014. Anticancer effects of
human amniotic membrane and its epithelial cells. Medical Hypotheses 82:
488-489.
Oren, R. & Kohn, A. 1969. Density dependent inhibition of cell
growth in cultures of primary and established lines of cells. Journal of
Cellular Physiology 74(3): 307-314.
Paolin, A., Cogliati, E., Trojan, D., Griffoni, C., Grassetto, A.,
Elbadawy, H.M. & Ponzin, D. 2016. Amniotic membranes in ophthalmology: Long
term data on transplantation outcomes. Cell and Tissue Banking 17(1):
51-58.
Rai, B., Kaur, J., Jain, R. & Anand, S.C. 2010. Levels of
gingival crevicular metalloproteinases-8 and -9 in periodontitis. Saudi
Dental Journal 22(3): 129-131.
Shimauchi, H., Nemoto, E., Ishihata, H. & Shimomura, M. 2013.
Possible functional scaffolds for periodontal regeneration. Japanese Dental
Science Review 49(4): 118-130.
Sisson, K., Zhang, C., Farach-Carson, M.C., Chase, D.B. &
Rabolt, J.F. 2010. Fiber diameters control osteoblastic cell migration and
differentiation in electrospun gelatin. Journal of Biomedical Materials
Research. Part A 94(4): 1312-1320.
Spinale, F.G. 2007. Myocardial matrix remodeling and the matrix
metalloproteinases: Influence on cardiac form and function. Physiological
Reviews 87(4): 1285-1342.
Spira, M., Liu, B., Xu, Z., Harrell, R. & Chahadeh, H. 1994.
Human amnion collagen for soft tissue augmentation-biochemical
characterizations and animal observations. Journal of Biomedical Materials
Research 28(1): 91-96.
Spoerl,
E., Wollensak, G., Reber, F. & Pillunat, L. 2004. Cross-linking of human
amniotic membrane by glutaraldehyde. Ophthalmic Research 36(2): 71-77.
Taghiabadi,
E., Nasri, S., Shafieyan, S., Jalili Firoozinezhad, S. & Aghdami, N. 2015.
Fabrication and characterization of spongy denuded amniotic membrane based
scaffold for tissue engineering. Cell Journal 16(4): 476-487.
Tseng,
S.C., Li, D.Q. & Ma, X. 1999. Suppression of transforming growth
factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation
in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. Journal
of Cellular Physiology 179(3): 325-335.
*Corresponding author; email:
haslinakk@usm.my
|