Sains Malaysiana 48(9)(2019): 1937–1946

http://dx.doi.org/10.17576/jsm-2019-4809-15

 

Effect of N-Acetylcysteine Supplementation on Oxidative Stress-Mediated Cryoinjury of Bone Marrow Derived-Hematopoietic Stem Cells

(Kesan Suplementasi N-Asetilsistein ke atas Kecederaan Krio Aruhan Tekanan Oksidatif pada Sel Tunjang Hematopoetik Pencilan Sumsum Tulang)

 

SHAWAL MARADONA ABDUL WAHAB, ZARIYANTEY ABD HAMID*, RAMYA DEWI MATHIALAGAN & IZATUS SHIMA TAIB

 

Biomedical Science Programme, Centre for Health & Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 18 February 2019/Accepted: 19 June 2019

 

ABSTRACT

Hematopoietic stem cells (HSCs) transplantation was introduced as curative treatment for various diseases. Cryopreservation of HSCs is crucial for long term storage and maintenance of cellular quality; however, it has been reported that cryopreservation itself causes oxidative stress-driven apoptosis and cell loss. This study investigated impact of supplementing N-acetylcysteine (NAC) as antioxidant during cryopreservation on viability and oxidative stress in HSCs. HSCs were isolated from murine bone marrow, cultured in HSCs growth media and cryopreserved (1×106 cells per vial) together with 10% DMSO and NAC (0, 0.25, 0.5 or 2.0 μM) for 48 h, 2 weeks or 8 weeks at -196°C using controlled-rate-freezing technique. Cell viability and oxidative stress in cryopreserved cells were analysed at each time-point. Cell viability was significantly reduced (p<0.05) following cryopreservation as compared to pre-cryopreservation. NAC supplementation significantly increased cell viability (p<0.05) after 48 h cryopreservation at 0.5 μM and 2.0 μM and after 2 weeks cryopreservation at 0.25 μM compared to the controls. Cryopreservation significantly enhanced GSH level (p<0.05) and reduced MDA level (p<0.05) without affecting SOD activity and PC level in HSCs compared to pre-cryopreservation. NAC supplementation significantly increased GSH level at 0.25 μM in cryopreserved HSCs compared to control. In conclusion, NAC supplementation during cryopreservation showed potential in minimizing cryoinjury by promoting cell viability, increasing antioxidant capacity and reducing oxidative damage in HSCs, however these effects are influenced by both durations of cryopreservation and NAC concentration.

 

Keywords: Cryopreservation; hematopoietic stem cells; N-acetylcysteine; oxidative stress

 

ABSTRAK

Pemindahan sel stem hematopoietik (SSH) telah diperkenalkan sebagai rawatan pelbagai penyakit. Pengawetan krio SSH adalah penting untuk penyimpanan dan pemeliharaan kualiti SSH, namun pengawetan krio dilaporkan berupaya mengaruh apoptosis dan penurunan keviabelan sel akibat tekanan oksidatif. Kajian ini telah mengkaji kesan suplementasi N-asetilsistien (NAC) sebagai antioksidan semasa pengawetan krio terhadap keviabelan dan tekanan oksidatif SSH. SSH diisolasi daripada sum-sum tulang mencit, dikulturkan di dalam media pengkulturan SSH dan seterusnya diawet krio (1×106 sel per vial) dengan penambahan 10% DMSO dan NAC (0 μM, 0.25 μM, 0.5 μM atau 2.0 μM) selama 48 jam, 2 minggu atau 8 minggu pada suhu -196°C. Keviabelan sel dan tekanan oksidatif ditentukan ke atas SSH pada setiap tempoh pengawetan krio. Keviabelan sel menurun secara signifikan (p<0.05) selepas pengawetan krio berbanding dengan pra-pengawetan krio. Suplementasi NAC telah meningkatkan keviabelan sel secara ketara (p<0.05) selepas pengawetan krio selama 48 jam pada kepekatan 0.5 μM dan 2.0 μM dan juga selepas 2 minggu pengawetan krio pada kepekatan 0.25 μM berbanding kawalan. Pengawetan krio memberi kesan peningkatan aras GSH (p<0.05) dan penurunan aras MDA (p<0.05) tanpa memberi kesan yang signifikan terhadap aras SOD dan PC berbanding pra-pengawetan krio. Suplementasi NAC meningkatkan aras GSH secara signifikan (p<0.05) pada kepekatan 0.25 μM dalam SSH yang dikrio awet berbanding kawalan. Secara kesimpulannya, suplementasi NAC semasa pengawetan krio berpotensi meningkatkan keviabelan sel dan kapasiti antioksidan serta mengurangkan kesan kerosakan oksidatif, tetapi kesan ini adalah dipengaruhi oleh jangka masa pengawetan krio dan kepekatan NAC yang digunakan.

 

Kata kunci: N-asetilsistien; pengawetan krio; sel stem hematopoietik; tekanan oksidatif

REFERENCES

Abdel-Wahab, W.M. & Moussa, F.I. 2019. Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug Des. Devel. Ther. 11(13): 1155-1162.

Ali, F., Khan, M., Khan, S.N. & Riazuddin, S. 2016. N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: A novel hypothesis for autologous stem cell transplantation. J. Chin. Med. Assoc. 79(3): 122-129.

Abdul Hamid, Z., Hii, W., Lin, L., Abdalla, B.J., Yuen, O.B., Latif, E.S., Mohamed, J., Nor Fadilah, R., Wah, C.P., Muhd Khairul Akmal, W.H. & Siti Balkis, B. 2014. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells. The Scientific World Journal 2014: 258192.

Abdul Hamid, Z., Tan, H.Y., Chow, P.W., Harto, K.A.W., Chan, C.Y. & Mohamed, J. 2018. The role of N-acetylcysteine supplementation on the oxidative stress levels, genotoxicity and lineage commitment potential of ex vivo murine haematopoietic stem/progenitor cells. Sultan Qaboos University Medical Journal 18(5): 130-136.

Berniakovich, I., Laricchia-Robbio, L., Carlos, J. & Izpisua Belmonte, J.C. 2012. N-acetylcysteine protects induced pluripotent stem cells from in vitro stress: Impact on differentiation outcome. Int. J. Dev. Biol. 56(9): 729-735.

Berz, D., McCormack, E.M., Winer, E.S., Colvin, G.A. & Quesenberry, P.J. 2017. Cryopreservation of hematopoietic stem cells. American Journal of Hematology 82(6): 463-472.

Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. & Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal 5(1): 9-19.

Boltz-Nitulescu, G., Wiltschke, C., Holzinger, C., Fellinger, A., Scheiner, O., Gessl, A. & Förster, O. 1987. Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant. Journal of Leukocyte Biology 41(1): 83-91.

Bounous, G. & Molson, H.J. 2003. The antioxidant system. Anticancer Research 23: 1411-1416.

Bucak, M.N., Sarıözkan, S., Tuncer, P.B., Ulutaş, P.A. & Akçadağ, H.İ. 2009. Effect of antioxidants on microscopic semen parameters, lipid peroxidation and antioxidant activities in Angora goat semen following cryopreservation. Small Ruminant Research 81: 90-95.

Copelan, E.A. 2006. Hematopoietic stem-cell transplantation. The New England Journal of Medicine 354(17): 1813-1826.

Chin, Y.C., Abdul Hamid, Z., Taib, I.S., Hui, T., Muhd Khairul Akmal, W.H. & Chow, P.W. 2018. Effects of n-acetyl-cysteine supplementation on ex vivo clonogenicity and oxidative profile of lineage-committed hematopoietic stem cells. Jurnal Teknologi DOI: https://doi.org/10.11113/jt.v80.11419.

Dalle-donne, I., Rossi, R., Giustarini, D., Milzani, A. & Colombo, R. 2003. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta 329: 23-38.

Djuwantono, T., Wirakusumah, F.F., Achmad, T.H., Sandra, F., Halim, D. & Faried, A.A. 2011. Comparison of cryopreservation methods: Slow-cooling vs rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells. BMC Research Notes 4: 371.

Fadilah, S.A.W., Leong, C.F. & Cheong, S.K. 2008. Stem cell transplantation in Malaysia and future directions. Medical Journal Malaysia 63(4): 279-280.

Fan, J., Cai, H., Yang, S., Yan, L. & Tan, W. 2008. Comparison between the effects of normoxia and hypoxia on antioxidant enzymes and glutathione redox state in ex vivo culture of CD34 + cells. Comparative Biochemistry and Physiology, Part B 151: 153-158.

Fatima, A., Rehman Qadir, A.U., Fatima, N. & Wajid, N. 2017. The effect of N-acetyl cysteine on H2O2 mediated oxidative stress in Whartonʼs jelly derived mesenchymal stem cells. Adv. Life Sci. 4(4): 137-142.

Hatzimichael, E. & Tuthill, M. 2010. Hematopoietic stem cell transplantation. Stem Cell and Cloning: Advances and Applications 3: 105-117.

Isachenko, E., Isachenko, V., Katkov, I.I., Dessole, S. & Nawroth, F. 2013. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From past practical difficulties to present success. Reproductive Biomedicine Online 6: 191-200.

Irabbasi, E.P., Hahar, S.S., Anaf, Z.A.M., Ajab, N.F.R. & Anap, R.A.M. 2016. Efficacy of ascorbic acid (Vitamin C) and/n-acetylcysteine (NAC) supplementation on nutritional and antioxidant status of male Chronic Obstructive Pulmonary Disease (COPD) patients. Journal of Nutritional Science and Vitaminology 62: 54-61.

Kelly, S.G. 1998. Clinical applications of n-acetylcysteine. Alternative Medicine Review 3(2): 114-127.

Kotahri, S., Thompson, A., Agarwal, A. & du Plessis, S.S. 2010. Free radicals: Their beneficial and detrimental effects on sperm function. Indian Journal of Experimental Biology 48(5): 425-435.

Liu, A.M., Qu, W.W., Liu, X. & Qu, C. 2012. Chromosomal instability in in vitro cultured mouse hematopoietic cells associated with oxidative stress. Aerican Journal of Blood Research 2(1): 71-76.

Limaye, L.S. 1997. Bone marrow cryopreservation: Improved recovery due to bioantioxidant additives in the freezing solution. Stem Cells 15: 353-358.

Maheshwari, A., Misro, M.M., Aggarwal, A., Sharma, R.K. & Nandan, D. 2011. N-acetyl-L-cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation of caspase-9 and JNK/c-Jun. Mol Reprod Dev 78(2): 69-79.

Maraldi, T., Angeloni, C., Giannoni, E. & Sell, C. 2015. Reactive oxygen species in stem cells. Oxid. Med. Cell Longev. 2015: 159080.

Martacic, J., Kovacevic, M., Suncica, F., Zorica, B., Tamara, C. & Arsic, P.A. 2018. N-acetyl-l-cysteine protects dental tissue stem cells against oxidative stress in vitro. Clinical Oral Investigations 22(8): 2897-2903.

Matsumoto, Y., Iwasaki, H. & Suda, T. 2011. Maintenance of adult stem cells: Role of the stem cell niche. In Adult Stem Cells: Stem Cell Biology and Regenerative Medicine, edited by Phinney, D. Totowa: Humana Press. pp. 35-55.

Motta, J.P.R., Gomes, B.E., Bouzas, L.F., Paraguassu- Braga, F.H. & Porto, L.C. 2010. Evaluations of bioantioxidants in cryopreservation of umbilical cord blood using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology 60: 301-307.

Ng, A.P. & Alexander, W.S. 2017. Haematopoietic stem cells: Past, present and future. Cell Death Discovery 3: 17002.

Orrenius, S., Gogvadze, V. & Zhivotovsky, B. 2007. Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology 47(1): 143-183.

Pal, R., Hanwate, M. & Totey, S.M. 2008. Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. Journal of Tissue Engineering and Regenerative Medicine 2(7): 436-444.

Panch, S.R., Szymanski, J., Savani, B.N. & Stroncek, D.F. 2017. Sources of hematopoietic stem and progenitor cells and methods to optimize yields for clinical cell therapy. Biology of Blood and Marrow Transplantation 23(8): 1241-1249.

Reubinoff, B.E., Pera, M.F., Vajta, G. & Trounson, A.O. 2001. Effective cryopreservation of human embryonic stem cells by open pulled straw vitrification method. Human Reproduction 16(10): 2187-2194.

Rocha, V. & Gluckman, E. 2006. Clinical use of umbilical cord blood hematopoietic stem cells. Biology of Blood and Marrow Transplantation 12(1): 34-41.

Rowley, S.D. 1992. Hematopoietic stem cell cryopreservation: A review of current techniques. Journal of Hematotherapy 250(1): 233-250.

Samuni, Y., Goldstein, S., Dean, O.M. & Berk, M. 2013. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 1830(8): 4117-4129.

Sasnoor, L.M., Kale, V.P. & Limaye, L. 2003. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. Journal of Hematotherapy & Stem Cell Research 12: 553-564.

Seita, J. & Weissman, I.L. 2010. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdisipline Review Systems Biology and Medicine 2(6): 640-653.

Shaban, S., El-husseny, M.W.A., Abushouk, A.I., Muhammad, A., Salem, A., Mamdouh, M. & Abdel-daim, M.M. 2017. Effects of antioxidant supplements on the survival and differentiation of stem cells. Oxidative Medicine and Cellular Longevity 13: 1-16.

Tatone, C., Di Emidio, G., Vento, M., Ciriminna, R. & Artini, P.G. 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecological Endocrinology 26(8): 563-567.

Vosganian, G.S., Waalen, J., Kim, K., Jhatakia, S., Schram, E., Lee, T., Riddell, D. & James, R.M. 2012. Effects of long-term cryopreservation on peripheral blood progenitor cells. Cytotherapy 14(10): 1228-1234.

Zhou, C.Q. 2004. Cryopreservation of human embryonic stem cells by vitrification. Chin. Med. J. (Engl) 117: 1050-1055.

 

*Corresponding author; email: zyantey@ukm.edu.my

 

 

 

previous