Sains Malaysiana 49(12)(2020): 2997-3005
http://dx.doi.org/10.17576/jsm-2020-4912-11
Enhanced Performance
of Quantum Dots Sensitized Solar Cell Utilizing Copper Indium Sulfide and Reduced-Graphene Oxide with the Presence of
Silver Sulfide
(Peningkatan Prestasi Sel Suria Dipekakan Titik Kuantum menggunakan Tembaga Indium Sulfida dan Grafin Oksida Terturun dengan Kehadiran Perak Sulfida)
NURUL SYAFIQAH MOHAMED
MUSTAKIM1,2, MUHAZRI ABD MUTALIB2, SUHAILA SEPEAI2,
NORASIKIN AHMAD LUDIN2, MOHD ASRI MAT TERIDI2 & MOHD
ADIB IBRAHIM2*
1Spectrum
International College of Technology, 2F-26A, The Main Place Mall, Jalan
USJ21/10, USJ 21, 47360 Subang Jaya, Selangor Darul Ehsan, Malaysia
2Solar Energy
Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 12 August 2020/Accepted: 27 August 2020
ABSTRACT
In this study, rGO/CuInS2 has been
successfully prepared onto TiO2 thin film using solvothermal method
followed by Ag2S deposition layer by successive ionic layer
adsorption and reaction deposition (SILAR) technique. The morphology,
structural, and optical properties of TiO2/rGO/CuInS2 thin film were investigated by using field emission scanning electron
microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force
microscope (AFM), X-ray diffraction (XRD) and ultra-violet-visible near
infrared spectrophotometer (UV-Vis). For electrical properties, electrochemical
impedance spectra (EIS) and current-voltage (I-V) test investigated the
interfacial charge-transfer resistances and the conversion efficiency of the
samples. Results showed that the average particles size of the samples ranged
from ±46.52 to ±53.97 nm in diameter. UV-VIS analysis indicated that TiO2/rGO/CuInS2 thin film showed better light
absorption capability with the presence of Ag2S deposition layers.
The rGO/CuInS2 quantum dot sensitized with Ag2S layers exhibit a
photovoltaic power conversion efficiency of 0.33%, which has great improvement
of short circuit current (ISC) comparing with
that of rGO/CuInS2 quantum dot sensitized
without Ag2S deposition layers.
Keywords: Ag2S; CuInS2;
quantum dots; rGO; SILAR; solar cells; solvothermal
ABSTRAK
Dalam kajian ini, rGO/CuInS2 telah berjaya disediakan ke atas filem nipis TiO2 dengan menggunakan kaedah solvoterma diikuti dengan lapisan pemendapan Ag2S melalui teknik penjerapan dan tindak balas lapisan ion berturut-turut (SILAR). Sifat morfologi, struktur dan optik bagi filem nipis TiO2/rGO/CuInS2 dikaji dengan menggunakan mikroskopi elektron imbasan bidang (FESEM), spektroskopi sinar-X penyebaran tenaga (EDX), mikroskop kekuatan atom (AFM), difraksi sinar-X (XRD) dan spektrofotometer dekat inframerah ultraungu boleh nampak (UV-VIS). Untuk sifat elektrik, ujian elektrokimia impedansi spektra (EIS) dan arus-voltan (I-V) mengkaji rintangan pemindahan cas antara muka dan kecekapan penukaran sampel. Hasil kajian menunjukkan bahawa ukuran purata bagi sampel hablur adalah berkisar antara ± 46.52 hingga ± 53.97 nm. Analisis UV-VIS menunjukkan bahawa filem nipis TiO2/rGO/CuInS2 menunjukkan keupayaan penyerapan cahaya yang lebih baik dengan adanya lapisan pemendapan Ag2S. Titik kuantum terpeka rGO/CuInS2 dengan lapisan Ag2S menunjukkan kecekapan penukaran kuasa fotovoltan sebanyak 0.33%, yang mempunyai peningkatan arus litar pintas (ISC)
yang besar berbanding dengan titik kuantum terpeka rGO/CuInS2 tanpa lapisan pemendapan Ag2S.
Kata kunci: Ag2S;
CuInS2; rGO; sel suria; SILAR; solvoterma; titik kuantum
REFERENCES
Han, M., Jia, J., Yu, L. & Yi, G. 2015. Fabrication and
photoelectrochemical characteristics of CuInS2 and PbS quantum dot co-sensitized TiO2 nanorod
photoelectrodes. RSC Advances 5(64): 51493-51500.
Holi, A.M., Zainal, Z., Talib, Z.A., Lim,
H.N., Yap, C.C., Chang, S.K. & Ayal, A.K. 2017.
Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots. Superlattices and Microstructures 103(2017): 295-303.
Hosseinpour-Mashkani, S.M., Salavati-Niasari, M. & Mohandes,
F. 2014. CuInS2 nanostructures: Synthesis, characterization,
formation mechanism and solar cell applications. Journal of
Industrial and Engineering Chemistry 20(5): 3800-3807.
Ilaiyaraja, P.,
Rakesh, B., Das, T.K., Mocherla, P.S. & Sudakar, C. 2018. CuInS2 quantum dot sensitized
solar cells with high VOC≈ 0.9 V achieved using microsphere-nanoparticulate
TiO2 composite photoanode. Solar Energy Materials and Solar
Cells 178: 208-222.
Kouhnavard, M., Ikeda, S., Ludin, N.A., Khairudin, N.A., Ghaffari, B.V., Mat-Teridi, M.A.,
Ibrahim, M.A., Sepeai, S. & Sopian,
K. 2014. A review of semiconductor materials as sensitizers for quantum
dot-sensitized solar cells. Renewable and Sustainable Energy Reviews 37(2014): 397-407.
Kumari, A., Singh, I., Prasad, N., Dixit,
S.K., Rao, P.K., Bhatnagar, P.K., Mathur, P.C., Bhatia, C.S. & Nagpal, S.
2014. Improving the efficiency of a poly(3-hexylthiophene)-CuInS2 photovoltaic device by incorporating graphene nanopowder. Journal of Nanophotonics 8 (1): 083092.
Madhavan, A.A., Kalluri, S., Chacko, D.K., Arun, T.A., Nagarajan, S.,
Subramanian, K.R., Nair, A.S., Nair, S.V. & Balakrishnan, A. 2012.
Electrical and optical properties of electrospun TiO2-graphene
composite nanofibers and its application as DSSC photo-anodes. RSC
Advances 2(33): 13032-13037.
Meng,
W., Zhou, X., Qiu, Z., Liu, C., Chen, J. & Yue, W. 2015. Reduced graphene
oxide-supported aggregates of CuInS2 quantum dots as an effective
hybrid electron acceptor for polymer-based solar cells. Carbon 96:
532-540.
Mustakim, N.S.M., Ubani, C.A., Sepeai, S., Ludin, N.A., Teridi, M.A.M. &
Ibrahim, M.A. 2018. Quantum dots processed by SILAR for solar cell
applications. Solar Energy 163(2018): 256-270.
Peng, Z., Liu, Y., Zhao, Y., Chen, K., Cheng,
Y., Kovalev, V. & Chen, W. 2014. ZnSe passivation layer for the efficiency enhancement of
CuInS2 quantum dots sensitized solar cells. Journal of Alloys
and Compounds 587(2014): 613-617.
Solaiyammal,
T. & Murugakoothan, P. 2019. Green synthesis of Au and the impact of Au on
the efficiency of TiO2 based dye sensitized solar cell. Materials
Science for Energy Technologies 2(2): 171-180.
Tian, J., Gao, R., Zhang, Q., Zhang, S., Li,
Y., Lan, J., Qu, X. & Cao, G. 2012. Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of
quantum dots in TiO2 film. The Journal of Physical Chemistry
C 116(35): 18655-18662.
Tubtimtae, A., Wu, K.L.,
Tung, H.Y., Lee, M.W. & Wang, G.J. 2010. Ag2S quantum
dot-sensitized solar cells. Electrochemistry Communications 12(9): 1158-1160.
Ubani, C.A., Ibrahim,
M.A., Teridi, M.A.M., Sopian,
K., Ali, J. & Chaudhary, K.T. 2016. Application of graphene in dye and
quantum dots sensitized solar cell. Solar Energy 137: 531-550.
Yue, W., Lan, M., Zhang, G., Sun, W., Wang,
S. & Nie, G. 2014. Size-dependent polymer/CuInS2 solar cells with tunable synthesis of CuInS2 quantum dots. Materials
Science in Semiconductor Processing 24(2014): 117-125.
Zhang, R., Qi, S., Jia, J., Torre, B., Zeng,
H., Wu, H. & Xu, X. 2015a. Size and refinement edge-shape effects of
graphene quantum dots on UV-visible absorption. Journal of Alloys and
Compounds 623(2015): 186-191.
Zhang,
X., Liu, J., Zhang, J., Vlachopoulos, N. &
Johansson, E.M. 2015b. ZnO@ Ag2S
core-shell nanowire arrays for environmentally friendly solid-state quantum
dot-sensitized solar cells with panchromatic light capture and enhanced
electron collection. Physical Chemistry Chemical Physics 17(19):
12786-12795.
*Corresponding
author; email: mdadib@ukm.edu.my
|