Sains Malaysiana 49(12)(2020): 3037-3044
http://dx.doi.org/10.17576/jsm-2020-4912-15
Effect
of Shock Wave on Constant Load Behaviour of Pb-Free/CNT Solder Joint
(Kesan
Gelombang Kejutan terhadap Kelakuan Beban Malar Sambungan Pateri Bebas Pb/CNT)
NORLIZA ISMAIL1,2,
AZMAN JALAR1,2*, WAN YUSMAWATI WAN
YUSOFF3, NUR SHAFIQA SAFEE3 & ARIFFIN ISMAIL3
1Department of Applied Physic, Faculty of Science &
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Institute of Microengineering and Nanoelectronics
(IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Pusat Asasi Pertahanan, Universiti
Pertahanan Malaysia (UPNM), Kem Sungai Besi, 57000 Kuala Lumpur, Federal
Territory, Malaysia
Received: 13 August 2020/Accepted: 27 August 2020
ABSTRACT
The constant load behaviour of SAC305 solder joint with
addition of carbon nanotube (CNT), exposed to shock wave condition was
investigated. Formulated SAC305-CNT solder pastes with 0.04 wt. % CNT were
manually printed to the printed circuit board (PCB) with copper surface finish to
form solder joint. The solder joint was exposed to the shock wave condition via
open field blast air test using Trinitrotoluene (TNT) explosive.
Nanoindentation approach was used to determine the constant load behavior of
the SAC305-CNT solder joint under shock wave condition. The results showed that
addition of CNT reduced the indentation depth of SAC305 solder joint at 10 mN
peak load for blast test sample and control sample. Indentation depth
displacement of SAC305-CNT solder joint for blast test sample and control
sample were reduced about ~ 42 and ~56%, respectively, if compared to the
SAC305 solder joint for blast test sample and control sample. SAC305-CNT solder
joint was experienced minimal changes of stress exponent when exposed to the
shock wave. The existence of CNT in the solder joint slows down the depth
displacement due to constant load.
Keywords: Carbon nanotube; constant load behaviour;
SAC305-CNT; shock wave; solder joint
ABSTRAK
Kelakuan beban malar sambungan pateri SAC305 dengan penambahan
karbon nanotiub (CNT) yang didedahkan kepada keadaan gelombang kejutan telah
dikaji. Pes pateri SAC305-CNT yang diformulasi dengan 0.04 % bt. CNT telah
dicetak secara manual ke atas papan litar pencetak (PCB) berkemasan kuprum
untuk menghasilkan sambungan pateri. Sambungan pateri yang didedahkan kepada
keadaan gelombang kejutan melalui ujian letupan udara padang terbuka
menggunakan bahan letupan Trinitrotoluena (TNT). Pendekatan pelekukan nano digunakan untuk
menentukan sifat kelakuan beban malar sambungan pateri SAC305-CNT pada keadaan
gelombang kejutan. Keputusan menunjukkan penambahan CNT mengurangkan kedalaman
pelekukan sambungan pateri SAC305-CNT pada beban puncak 10 mN untuk sampel
ujian letupan dan sampel kawalan. Perubahan kedalaman pelekukan sambungan
pateri SAC305-CNT bagi sampel ujian letupan dan sampel kawalan masing-masing
telah berkurang sebanyak ~ 42 dan ~56% jika
dibandingkan dengan sambungan pateri SAC305 bagi sampel ujian letupan dan
sampel kawalan. Sambungan pateri SAC305-CNT mengalami perubahan eksponen
tekanan yang minimum apabila didedahkan kepada gelombang kejutan. Kehadiran CNT
di dalam sambungan pateri memperlahankan perubahan kedalaman akibat beban
malar.
Kata kunci: Gelombang kejutan; karbon nanotiub; kelakuan
beban malar; SAC305-CNT; sambungan pateri
REFERENCES
Goodall, R. &
Clyne, T.W. 2006. A critical appraisal of the extraction of creep parameters
from nanoindentation data obtained at room temperature. Acta Mater. 54:
5489-5499.
Han, Y.D., Jing, H.Y., Nai, S.M.L., Xu, L.Y., Tan,
C.M. & Wei, J. 2012. Creep mitigation in Sn–Ag–Cu composite solder with
Ni-coated carbon nanotubes. J. Mater. Sci.: Mater. Electron. 23:
1108-1115.
Hasnine, M., Suhling, J., Prorok, B., Bozack, M.J. & Lall, P. 2017.
Anisotropic mechanical properties of SAC solder joints in microelectronic
packaging and prediction of uniaxial creep using nanoindentation creep. Exp.
Mech. 57: 603-614.
Huang, Y., Xiu, Z., Wu, G., Tian, Y. & He, P.
2016. Sn–3.0Ag–0.5Cu nanocomposite solders reinforced by graphene nanosheets. J. Mater. Sci.: Mater. Electron 27(7):
6809-6815.
Ismail, N., Jalar, A., Abu Bakar, M., Ismail, R., Safee, N.S., Ismail,
A.G. & Ibrahim, N.S. 2019. Effect of isothermal aging on microhardness
properties of Sn-Ag-Cu/CNT/Cu using nanoindentation. Sains Malaysiana 48(6): 1267-1272.
Ismail, N., Jalar, A., Abu Bakar, M., Safee, N.S., Wan Yusoff, W.Y.
& Ismail, A. 2020. Microstructural evolution and micromechanical properties
of SAC305/CNT/CU solder joint under blast wave condition. Soldering and
Surface Mount Technology. doi/10.1108/SSMT-11-2019-0035.
Jalar, A., Bakar, M.A. & Ismail, R. 2020. Temperature dependence of
elastic-plastic properties of fine-pitch SAC 0307 solder joint using
nanoindentation approach. Metallurgical and Materials Transactions A:
Physical Metallurgy and Materials Science 51:
1221-1228.
Jiang, N., Zhang, L.,
Liu, Z., Sun, L., Long, W., He, P., Xiong, M. & Zhao, M. 2019. Reliability
issues of lead-free solder joints in electronic devices. Science and
Technology of Advanced Materials 20(1): 876-901.
Kassner, M.E. 2009. Fundamentals of Creep in Metals and Alloys. 2nd ed. Oxford:
Butterworth-Heinemann.
Kumar, K.M., Kripesh, V. & Tay, A.O. 2008.
Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite
solders. Journal Alloys Compound 450:
229-237.
Li, Z., Zhao, S., Ritchie, R.O. & Meyers, M.A. 2019. Mechanical
properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog.
Mater. Sci. 102: 296-345.
Mahmudi, R., Roumina, R.
& Raeisinia, B. 2004. Investigation of stress exponent in the power-law
creep of Pb–Sb alloys. Mater. Sci. Eng. A. 382: 5-22.
Mallakpour, S. &
Khadem, E. 2016. Carbon nanotube-metal oxide nanocomposites: Fabrication,
properties and applications. Chemical Engineering Journal 302: 344-367.
Niranjani, V.L., Vajinder Singh, Chandra Rao, B.S.S. & Kamat, S.V.
2014. Creep behaviour of SAC387 lead free solder alloy reinforced with single
walled carbon nanotubes. Trans. Indian Inst. Met. 68: 311-317.
Sadeghilaridjani, M.
& Mukherjee, S. 2020. High-temperature nano-indentation creep behavior of
multi-principal element alloys under static and dynamic loads. Metals 10(2): 250.
Sun, L. & Zhang, L. 2015. Properties and
microstructure of Sn-Ag-Cu-X lead-free solder joints in electronic packaging. Advances
in Materials Science and Engineering 2015: Article ID. 639028.
Wan Yusoff, W.Y., Ismail, N., Safee, N.S., Ismail, A., Jalar, A. &
Abu Bakar, M. 2019. Correlation of microstructural evolution and hardness
properties of 99.0Sn-0.3Ag-0.7Cu (SAC0307) lead-free solder under blast wave
condition. Soldering and Surface Mount Technology 31(2): 102-108.
Xu, L.Y., Zhang, S.T., Jing, H.Y., Wang, L.X., Wei, J., Kong, X.C. & Han, Y.D. 2018. Indentation size effect on Ag nanoparticle-modified graphene/Sn-Ag-Cu solders. Journal of Electronic Materials 47: 612-619.
Yang, L., Liu, H. & Zhang, Y. 2018. Study on the tensile creep behaviour of carbon nanotubes-reinforced Sn-58Bi solder joints. Journal of Electronic Materials 47: 662-671.
Zhang, L. & Tu, K.N. 2014. Structure and
properties of lead-free solders bearing micro and nano particles. Materials Science and Engineering: R:
Reports 82: 1-32.
Zhongbao, Y., Wei, Z. & Ping, W. 2014. Effects
of Ni-coated carbon nanotubes addition on the microstructure and mechanical
properties of Sn-Ag-Cu solder alloys. Materials
Science and Engineering A 590: 295-300.
*Corresponding author; email: azmn@ukm.edu.my
|