Sains Malaysiana 49(12)(2020): 3037-3044

http://dx.doi.org/10.17576/jsm-2020-4912-15

 

Effect of Shock Wave on Constant Load Behaviour of Pb-Free/CNT Solder Joint

(Kesan Gelombang Kejutan terhadap Kelakuan Beban Malar Sambungan Pateri Bebas Pb/CNT)

 

NORLIZA ISMAIL1,2, AZMAN JALAR1,2*, WAN YUSMAWATI WAN YUSOFF3, NUR SHAFIQA SAFEE3 & ARIFFIN ISMAIL3

 

1Department of Applied Physic, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Pusat Asasi Pertahanan, Universiti Pertahanan Malaysia (UPNM), Kem Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 13 August 2020/Accepted: 27 August 2020

 

ABSTRACT

The constant load behaviour of SAC305 solder joint with addition of carbon nanotube (CNT), exposed to shock wave condition was investigated. Formulated SAC305-CNT solder pastes with 0.04 wt. % CNT were manually printed to the printed circuit board (PCB) with copper surface finish to form solder joint. The solder joint was exposed to the shock wave condition via open field blast air test using Trinitrotoluene (TNT) explosive. Nanoindentation approach was used to determine the constant load behavior of the SAC305-CNT solder joint under shock wave condition. The results showed that addition of CNT reduced the indentation depth of SAC305 solder joint at 10 mN peak load for blast test sample and control sample. Indentation depth displacement of SAC305-CNT solder joint for blast test sample and control sample were reduced about ~ 42 and ~56%, respectively, if compared to the SAC305 solder joint for blast test sample and control sample. SAC305-CNT solder joint was experienced minimal changes of stress exponent when exposed to the shock wave. The existence of CNT in the solder joint slows down the depth displacement due to constant load.

 

Keywords: Carbon nanotube; constant load behaviour; SAC305-CNT; shock wave; solder joint

 

ABSTRAK

Kelakuan beban malar sambungan pateri SAC305 dengan penambahan karbon nanotiub (CNT) yang didedahkan kepada keadaan gelombang kejutan telah dikaji. Pes pateri SAC305-CNT yang diformulasi dengan 0.04 % bt. CNT telah dicetak secara manual ke atas papan litar pencetak (PCB) berkemasan kuprum untuk menghasilkan sambungan pateri. Sambungan pateri yang didedahkan kepada keadaan gelombang kejutan melalui ujian letupan udara padang terbuka menggunakan bahan letupan Trinitrotoluena (TNT). Pendekatan pelekukan nano digunakan untuk menentukan sifat kelakuan beban malar sambungan pateri SAC305-CNT pada keadaan gelombang kejutan. Keputusan menunjukkan penambahan CNT mengurangkan kedalaman pelekukan sambungan pateri SAC305-CNT pada beban puncak 10 mN untuk sampel ujian letupan dan sampel kawalan. Perubahan kedalaman pelekukan sambungan pateri SAC305-CNT bagi sampel ujian letupan dan sampel kawalan masing-masing telah berkurang sebanyak ~ 42 dan ~56% jika dibandingkan dengan sambungan pateri SAC305 bagi sampel ujian letupan dan sampel kawalan. Sambungan pateri SAC305-CNT mengalami perubahan eksponen tekanan yang minimum apabila didedahkan kepada gelombang kejutan. Kehadiran CNT di dalam sambungan pateri memperlahankan perubahan kedalaman akibat beban malar.

 

Kata kunci: Gelombang kejutan; karbon nanotiub; kelakuan beban malar; SAC305-CNT; sambungan pateri

 

REFERENCES

 

Goodall, R. & Clyne, T.W. 2006. A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54: 5489-5499.

Han, Y.D., Jing, H.Y., Nai, S.M.L., Xu, L.Y., Tan, C.M. & Wei, J. 2012. Creep mitigation in Sn–Ag–Cu composite solder with Ni-coated carbon nanotubes. J. Mater. Sci.: Mater. Electron. 23: 1108-1115.

Hasnine, M., Suhling, J., Prorok, B., Bozack, M.J. & Lall, P. 2017. Anisotropic mechanical properties of SAC solder joints in microelectronic packaging and prediction of uniaxial creep using nanoindentation creep. Exp. Mech. 57: 603-614.

Huang, Y., Xiu, Z., Wu, G., Tian, Y. & He, P. 2016. Sn–3.0Ag–0.5Cu nanocomposite solders reinforced by graphene nanosheets. J. Mater. Sci.: Mater. Electron 27(7): 6809-6815.

Ismail, N., Jalar, A., Abu Bakar, M., Ismail, R., Safee, N.S., Ismail, A.G. & Ibrahim, N.S. 2019. Effect of isothermal aging on microhardness properties of Sn-Ag-Cu/CNT/Cu using nanoindentation. Sains Malaysiana 48(6): 1267-1272.

Ismail, N., Jalar, A., Abu Bakar, M., Safee, N.S., Wan Yusoff, W.Y. & Ismail, A. 2020. Microstructural evolution and micromechanical properties of SAC305/CNT/CU solder joint under blast wave condition. Soldering and Surface Mount Technology. doi/10.1108/SSMT-11-2019-0035.

Jalar, A., Bakar, M.A. & Ismail, R. 2020. Temperature dependence of elastic-plastic properties of fine-pitch SAC 0307 solder joint using nanoindentation approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 51: 1221-1228.

Jiang, N., Zhang, L., Liu, Z., Sun, L., Long, W., He, P., Xiong, M. & Zhao, M. 2019. Reliability issues of lead-free solder joints in electronic devices. Science and Technology of Advanced Materials 20(1): 876-901.

Kassner, M.E. 2009. Fundamentals of Creep in Metals and Alloys. 2nd ed. Oxford: Butterworth-Heinemann.

Kumar, K.M., Kripesh, V. & Tay, A.O. 2008. Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders. Journal Alloys Compound 450: 229-237.

Li, Z., Zhao, S., Ritchie, R.O. & Meyers, M.A. 2019. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 102: 296-345.

Mahmudi, R., Roumina, R. & Raeisinia, B. 2004. Investigation of stress exponent in the power-law creep of Pb–Sb alloys. Mater. Sci. Eng. A. 382: 5-22.

Mallakpour, S. & Khadem, E. 2016. Carbon nanotube-metal oxide nanocomposites: Fabrication, properties and applications. Chemical Engineering Journal 302: 344-367.

Niranjani, V.L., Vajinder Singh, Chandra Rao, B.S.S. & Kamat, S.V. 2014. Creep behaviour of SAC387 lead free solder alloy reinforced with single walled carbon nanotubes. Trans. Indian Inst. Met. 68: 311-317.

Sadeghilaridjani, M. & Mukherjee, S. 2020. High-temperature nano-indentation creep behavior of multi-principal element alloys under static and dynamic loads. Metals 10(2): 250.

Sun, L. & Zhang, L. 2015. Properties and microstructure of Sn-Ag-Cu-X lead-free solder joints in electronic packaging. Advances in Materials Science and Engineering 2015: Article ID. 639028.

Wan Yusoff, W.Y., Ismail, N., Safee, N.S., Ismail, A., Jalar, A. & Abu Bakar, M. 2019. Correlation of microstructural evolution and hardness properties of 99.0Sn-0.3Ag-0.7Cu (SAC0307) lead-free solder under blast wave condition. Soldering and Surface Mount Technology 31(2): 102-108.

Xu, L.Y., Zhang, S.T., Jing, H.Y., Wang, L.X., Wei, J., Kong, X.C. & Han, Y.D. 2018. Indentation size effect on Ag nanoparticle-modified graphene/Sn-Ag-Cu solders. Journal of Electronic Materials 47: 612-619.

Yang, L., Liu, H. & Zhang, Y. 2018. Study on the tensile creep behaviour of carbon nanotubes-reinforced Sn-58Bi solder joints. Journal of Electronic Materials 47: 662-671.

Zhang, L. & Tu, K.N. 2014. Structure and properties of lead-free solders bearing micro and nano particles. Materials Science and Engineering: R: Reports 82: 1-32.

Zhongbao, Y., Wei, Z. & Ping, W. 2014. Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn-Ag-Cu solder alloys. Materials Science and Engineering A 590: 295-300.

 

*Corresponding author; email: azmn@ukm.edu.my

   

 

 

previous