Sains Malaysiana 49(2)(2020): 305-313
http://dx.doi.org/10.17576/jsm-2020-4902-08
Incorporating
1-butyl-3-methylimidazolium Chloride Ionic Liquid into Iota Carrageenan Solid
Biopolymer Electrolyte for Electrochemical Devices Application
(Pencampuran
Cecair Ionik 1-butil-3-metilimidazolium Klorida ke dalam Elektrolit Biopolimer Pepejal
Iota Karagenan bagi Aplikasi Peranti Elektrokimia)
NUR AZLINA ABDUL GHANI1, FARAH HANNAN ANUAR1,
AZIZAN AHMAD1, NADHRATUN NAIIM MOBARAK1, INTAN
JULIANA SHAMSUDIN2, MARIAH ZULIANA DZULKIPLI1
& NUR HASYAREEDA HASSAN1*
1Centre for Advance Material and Renewable
Resources, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Chemistry Department, Centre for Defence Foundation
Studies, National Defence University of Malaysia, 57000 Kuala Lumpur, Federal
Territory, Malaysia
Received: 5
December 2018/Accepted: 27 October 2019
ABSTRACT
Solid biopolymer
electrolyte based on iota carrageenan and 1-butyl-3-methylimidazolium chloride,
[Bmim]Cl were successfully prepared by solution casting technique. Weight
percentage (wt. %) of [Bmim]Cl was varied from 0 wt. % to 100 wt. % and the
highest ionic conductivity achieved was 2.70 × 10-3 S cm-1 for 70 wt. % [Bmim]Cl at ambient temperature. The interaction between iota
carrageenan and [Bmim]Cl was confirmed by the formation of new peak on the
ATR-FTIR spectrum. The reduction in crystallinity of iota carrageenan as the
inclusion of [Bmim]Cl was observed based on X-ray diffraction (XRD)
spectroscopy. FESEM morphology showed the compatibility and homogeneity between
iota carrageenan and [Bmim]Cl while the LSV analysis showed that solid
biopolymer electrolyte-based iota carrageenan-[Bmim]Cl possess high
electrochemical stability up to 3.0 V. The transference number (TN) analysis
indicated that ions are the main contributor for the ionic conduction.
Keywords: Iota carrageenan; ionic
conductivity; ionic liquid; solid polymer electrolyte
ABSTRAK
Elektrolit biopolimer pepejal berasaskan
iota karagenan dan 1-butil-3-metilimidazolium klorida, [Bmim]Cl berjaya
dihasilkan melalui teknik pengacuan larutan. Peratus berat (% bt.) [Bmim]Cl
divariasikan daripada 0 % bt. sehingga
100 % bt. dan kekonduksian ionik tertinggi adalah 2.70 × 10-3 S cm-1 bagi 70 % bt. [Bmim]Cl pada suhu
ambien. Interaksi antara iota karagenan dan [Bmim]Cl disahkan dengan
pembentukan puncak baru pada spektrum ATR-FTIR. Pengurangan dalam penghabluran
karagenan apabila [Bmim]Cl
dimasukkan diperhatikan berdasarkan spektroskopi belauan sinar-X (XRD).
Morfologi FESEM memperlihatkan keserasian dan kehomogenan antara iota karagenan
dengan [Bmim]Cl manakala analisis LSV menunjukkan bahawa elektrolit biopolimer
pepejal berasaskan iota karagenan-[Bmim]Cl mempunyai kestabilan elektrokimia
yang tinggi sehingga 3.0V. Analisis nombor pemindahan (TN) membuktikan bahawa
ion adalah penyumbang utama bagi pengkonduksian ionik.
Kata kunci: Cecair ionik; elektrolit biopolimer pepejal; iota karagenan;
konduksian ionic
REFERENCES
Agrawal,
R.C. & Pandey, G.P. 2008. Solid polymer electrolytes: Materials designing
and all-solid-state battery applications: An overview. Journal of
Physics D: Applied Physics 41(22):
223001.
Anderson,
J.L., Armstrong, D.W. & Wei, G.T. 2006. Ionic liquids in analytical
chemistry. Analytical
Chemistry 78(9): 2892-2902.
Armand,
M., Endres, F., MacFarlane, D.R., Ohno, H. & Scrosati, B. 2009.
Ionic-liquid materials for the electrochemical challenges of the future. Nature
Materials 8(8):
621-629.
Avent,
A.G., Chaloner, P.A., Day, M.P., Seddon, K.R. & Welton, T. 1994. Evidence
for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and
its implications for room-temperature halogenoaluminate (III) ionic
liquids. Journal of the Chemical Society, Dalton Transactions 23:
3405-3413.
Arof,
A.K., Shuhaimi, N.E.A., Alias, N.A., Kufian, M.Z. & Majid, S.R. 2010.
Application of chitosan/iota-carrageenan polymer electrolytes in electrical
double layer capacitor (EDLC). Journal of Solid State Electrochemistry 14(12): 2145-2152.
Borderías,
A.J., Sánchez-Alonso, I. & Pérez-Mateos, M. 2005. New applications of
fibres in foods: Addition to fishery products. Trends in Food Science
& Technology 16(10):
458-465.
Bešter-Rogač,
M., Stoppa, A., Hunger, J., Hefter, G. & Buchner, R. 2011. Association of
ionic liquids in solution: A combined dielectric and conductivity study of
[bmim][Cl] in water and in acetonitrile. Physical Chemistry Chemical
Physics 13(39):
17588-17598.
Campo,
V.L., Kawano, D.F., da Silva Jr., D.B. & Carvalho, I. 2009. Carrageenans:
Biological properties, chemical modifications and structural analysis-A
review. Carbohydrate Polymers 77(2): 167-180.
Cláudio,
A.F.M., Swift, L., Hallett, J.P., Welton, T., Coutinho, J.A. & Freire, M.G.
2014. Extended scale for the hydrogen-bond basicity of ionic liquids. Physical
Chemistry Chemical Physics 16(14):
6593-6601.
Coggins,
C., Blanchard, K., Alvarez, F., Brache, V., Weisberg, E., Kilmarx, P.H.,
Lacarra, M., Massai, R., Mishell, D., Salvatierra, A. & Witwatwongwana, P.
2000. Preliminary safety and acceptability of a carrageenan gel for possible
use as a vaginal microbicide. Sexually Transmitted Infections 76(6): 480-483.
Ghani,
N.A.A., Othaman, R., Ahmad, A., Anuar, F.H. & Hassan, N.H. 2018. Impact of
purification on iota carrageenan as solid polymer electrolyte. Arabian
Journal of Chemistry 12(3): 370-376.
Giridhar,
P., Venkatesan, K.A., Srinivasan, T.G. & Rao, P.V. 2007. Electrochemical
behavior of uranium (VI) in 1-butyl-3-methylimidazolium chloride and thermal
characterization of uranium oxide deposit. Electrochimica Acta 52(9): 3006-3012.
Jumaah,
F.N., Mobarak, N.N., Ahmad, A., Ghani, M.A. & Rahman, M.Y. 2015. Derivative
of iota-carrageenan as solid polymer electrolyte. Ionics 21(5): 1311-1320.
Jumaah,
F.N., Mobaraka, N.N., Ahmad, A. & Ramli, N. 2013. Characterization of ɽ-carrageenan
and its derivative based green polymer electrolytes. AIP Conference
Proceedings 1571(1): 768-774.
Jayakumar,
M., Venkatesan, K.A. & Srinivasan, T.G. 2007. Electrochemical behavior of
fission palladium in 1-butyl-3-methylimidazolium chloride. Electrochimica
Acta 52(24):
7121-7127.
Liu,
Z., Wang, H., Li, Z., Lu, X., Zhang, X., Zhang, S. & Liu Zhou, K. 2011.
Characterization of the regenerated cellulose films in ionic liquids and
rheological properties of the solutions. Materials Chemistry and
Physics 128(1-2):
220-227.
Liew,
C.W., Ramesh, S. & Arof, A.K. 2014. A novel approach on ionic liquid-based
poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell
applications. International Journal of Hydrogen Energy 39(6): 2917-2928.
Mobarak,
N.N., Jumaah, F.N., Ghani, M.A., Abdullah, M.P. & Ahmad, A. 2015.
Carboxymethyl carrageenan-based biopolymer electrolytes. Electrochimica
Acta 175: 224-231.
Mobarak,
N.N., Ramli, N., Ahmad, A. & Rahman, M.Y.A. 2012. Chemical interaction and
conductivity of carboxymethyl κ-carrageenan based green polymer
electrolyte. Solid State Ionics 224: 51-57.
Moniha,
V., Alagar, M., Selvasekarapandian, S., Sundaresan, B. & Boopathi, G. 2018.
Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for
application in electrochemical devices. Journal of Non-Crystalline
Solids 481: 424-434.
Ng,
L.S. & Mohamad, A.A. 2006. Protonic battery based on a plasticized
chitosan-NH4NO3 solid polymer electrolyte. Journal of Power Sources 163(1): 382-385.
Osman,
Z. & Arof, A.K. 2003. FTIR studies of chitosan acetate-based polymer
electrolytes. Electrochimica Acta 48(8): 993-999.
Paula,
G.A., Benevides, N.M., Cunha, A.P., de Oliveira, A.V., Pinto, A.M., Morais,
J.P.S. & Azeredo, H.M. 2015. Development and characterization of edible
films from mixtures of κ-carrageenan, ι-carrageenan, and
alginate. Food Hydrocolloids 47: 140-145.
Rani,
M.S.A., Hassan, N.H., Ahmad, A., Kaddami, H. & Mohamed, N.S. 2016.
Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer
electrolytes for potential application in electrochemical devices. Ionics 22(10): 1855-1864.
Shamsudin,
I.J., Ahmad, A., Hassan, N.H. & Kaddami, H. 2015a. Biopolymer electrolytes
based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid. Ionics 22(6): 841-851.
Shamsudin,
I.J., Ahmad, A., Hassan, N.H. & Kaddami, H. 2015b. Bifunctional
ionic liquid in conductive biopolymer based on chitosan for electrochemical
devices application. Solid State Ionics 278: 11-19.
Shamsudin,
I.J., Ahmad, A. & Hassan, N.H. 2014. Green polymer electrolytes based on
chitosan and 1-butyl-3-methylimidazolium acetate. AIP Conference
Proceedings 1614(1): 393-398.
Sun,
P. & Armstrong, D.W. 2010. Ionic liquids in analytical chemistry. Analytica
Chimica Acta 661(1):
1-16.
Tanner,
K.E., Draper, P.R., Getz, J.J., Burnett, S.W. & Youngblood,
E. 2002. RP Scherer Technologies Inc. Film
forming compositions comprising modified starches and iota-carrageenan
and methods for manufacturing soft capsules using same. U.S.
Patent.
Vila,
J., Varela, L.M. & Cabeza, O. 2007. Cation and anion sizes influence in the
temperature dependence of the electrical conductivity in nine imidazolium based
ionic liquids. Electrochimica Acta 52(26): 7413-7417.
Woo,
H.J., Majid, S.R. & Arof, A.K. 2011. Conduction and thermal properties of a
proton conducting polymer electrolyte based on poly
(ε-caprolactone). Solid State Ionics 199: 14-20.
*Corresponding
author; email: syareeda@ukm.edu.my
|