Sains Malaysiana 49(3)(2020): 517-525

http://dx.doi.org/10.17576/jsm-2020-4903-06

 

Exploring the Molecular Interactions between Neoculin and the Human Sweet Taste Receptors through Computational Approaches

(Meneroka Interaksi Molekul antara Neokulin dan Reseptor Rasa Manis Manusia melalui Pendekatan Pengiraan)

 

RAGHEED HUSSAM YOUSIF1, HABIBAH A. WAHAB2, KAMYAR SHAMELI1 & NURUL BAHIYAH AHMAD KHAIRUDIN1*

 

1Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia

 

2School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Pulau Pinang, Malaysia

 

Received: 24 May 2019/Accepted: 5 December 2019

 

ABSTRACT

Neoculin is a sweet taste protein capable of modifying sour taste into sweet taste. Neoculin, along with other sweeteners, are received by the human sweet taste receptors T1R2 and T1R3. To date, there has been few studies regarding how neoculin interacts with the human sweet taste receptors in molecular level. In this study, computational approaches were applied to elucidate how neoculin interact with T1R2 and T1R3 at molecular level. In order to achieve this research, homology modeling for T1R2 and T1R3 was performed to predict their structure. A protein-protein docking study was conducted between neoculin and T1R2 and T1R3, which displayed a strong relationship with the previous experimental findings regarding the important residues of neoculin, and how they interact with the ATD domain of T1R3. These residues are His11, Asp91, Tyr21, Asn44, Arg48, Tyr 65, Val72, and Phe94. The best docked complexes were then subjected to molecular dynamics simulation for further analysis. The molecular dynamics simulation results showed the contributions of the important residues of neoculin in forming hydrogen bonds with the residues of the receptors. The binding energy between neoculin and each of T1R2 and T1R3 were also calculated. These results concluded that neoculin sweet taste and taste modifying abilities are only active when it binds to the amino terminal domain of T1R3.

 

Keywords: Homology modeling; molecular dynamics simulation; neoculin; protein-protein docking; T1R2\T1R3

 

ABSTRAK

Neokulin adalah protein rasa manis yang mampu mengubah rasa masam menjadi rasa manis. Neokulin, seperti pemanis lain, diterima oleh reseptor perasa manis manusia iaitu T1R2 dan T1R3. Sehingga kini, sudah terdapat beberapa kajian yang dijalankan untuk mengenal pasti bagaimana neokulin berinteraksi dengan reseptor kemanisan pada peringkat molekul. Dalam kajian ini, kaedah pengiraan digunakan untuk memperjelaskan bagaimana neokulin berinteraksi dengan T1R2 dan T1R3 pada tahap molekul. Bagi menjalankan kajian ini, permodelan homologi untuk T1R2 dan T1R3 telah dijalankan untuk menjangkakan struktur tersebut. Kajian pendokkan protein-protein telah dijalankan antara neokulin dan T1R2 serta T1R3, yang menunjukkan terdapat hubungan yang kuat dengan penemuan kajian sebelumnya mengenai sisa penting neokulin dan bagaimana ia berinteraksi bersama domain ATD kepada T1R3. Sisa tersebut adalah His11, Asp91, Tyr21, Asn44, Arg48, Tyr 65, Val72 dan Phe94. Kompleks dok terbaik itu kemudiannya diuji kepada simulasi dinamik molekul untuk analisis lanjutan. Hasil simulasi dinamik molekul menunjukkan sumbangan daripada sisa penting neokulin dalam membentuk ikatan hidrogen dengan sisa reseptor. Tenaga yang mengikat antara Neokulin dan setiap T1R2 dan T1R3 juga turut dihitung. Keputusan ini menyimpulkan bahawa rasa manis neokulin dan kebolehan mengubah suai adalah aktif hanya apabila ia mengikat kepada domain terminal amino T1R3.

 

Kata kunci: Neokulin; pemodelan homologi; pendokkan protein-protein; simulasi molekul dinamik; T1R2\T1R3

 

REFERENCES

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17): 3389-3402.

Assadi-Porter, F.M., Maillet, E.L., Radek, J.T., Quijada, J., Markley, J.L. & Max, M. 2010. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2‚T1R3 human sweet receptor. Journal of Molecular Biology 398(4): 584-599.

Binkowski, T.A., Naghibzadeh, S. & Liang, J. 2003. CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Res. 31(13): 3352-3355.

Castleman, P.N., Sears, C., Cole, J.A., Baker, D.L. & Parrill, A.L. 2018. GPCR homology model template selection benchmarking: Global versus local similarity measures.  Journal of Molecular Graphics and Modelling 86: 235-246.

Cheron, J.B., Golebiowski, J., Antonczak, S. & Fiorucci, S. 2017. The anatomy of mammalian sweet taste receptors. Proteins 85(2): 332-341.

Comeau, S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. 2004. ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Research 32(2): W96-W99.

Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M. & Barton, G.J. 1998. JPred: A consensus secondary structure prediction server. Bioinformatics 14(10): 892-893.

Cui, M., Jiang, P.H., Maillet, E., Max, M., Margolskee, R.F. & Roman Osman. 2006. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Current Pharmaceutical Design 12(35): 4591-4600.

Dias, R. & de Azevedo Jr., W.F. 2008. Molecular docking algorithms. Current Drug Targets 9(12): 1040-1047.

Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M-Y., Pieper, U. & Sali, A. 2007. Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science 50(1): 2.9.1-2.9.31.

Fischer, G., Rossmann, M. & Hyvönen, M. 2015. Alternative modulation of protein-protein interactions by small molecules. Current Opinion in Biotechnology 35: 78-85.

Ho, B.K. & Brasseur, R. 2005. The Ramachandran plots of glycine and pre-proline. BMC Structural Biology 5: 14.

Huang, S-Y. 2015. Exploring the potential of global protein-protein docking: An overview and critical assessment of current programs for automatic ab initio docking. Drug Discovery Today 20(8): 969-977.

Kastritis, P.L. & Bonvin, A.M.J.J. 2013. The binding affinity of macromolecular interactions: Daring to ask why proteins interact. Journal of The Royal Society Interface 10(79): 20120835.

Kim, S.K., Chen, Y., Abrol, R., Goddard, W.A. & Guthrie, B. 2017. Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proc. Natl. Acad. Sci. USA 114(10): 2568-2573.

Koizumi, T., Terada, T., Nakajima, K-I., Kojima, M., Koshiba, S., Matsumura, Y., Kaneda, K., Asakura, T., Shimizu-Ibuka, A., Abe, K. & Misaka, T. 2015. Identification of key neoculin residues responsible for the binding and activation of the sweet taste receptor.  Scientific Reports 5: 12947.

Koizumi, A., Nakajima, K., Asakura, T., Morita, Y., Ito, K., Shmizu-Ibuka, A., Misaka, T. & Abe, K. 2007. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications 358(2): 585-589.

Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D. & Vajda, S. 2017. The ClusPro web server for protein-protein docking. Nat. Protoc. 12(2): 255-278.

Kumari, R., Kumar, R., Open Source Drug Discovery Consortium. & Lynn, A. 2014. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling 54(7): 1951-1962.

Kurimoto, E., Suzuki, M., Amemiya, E., Yamaguchi, Y., Nirasawa, S., Shimba, N., Xu, N., Kashiwagi, T., Kawai, M., Suzuki, E. & Kato, K. 2007. Curculin exhibits sweet-tasting and taste-modifying activities through its distinct molecular surfaces. Journal of Biological Chemistry 282(46): 33252-33256.

Lee, J., Cheng, Xi., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Buckner, J., Jeong, J.C., Qi, Y.F., Jo, S.H., Pande, V.S., Case, D.A., Brooks, III, C.L., MacKerell Jr.,  A.D., Klauda, J.B. & Im, W.P. 2015. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field.  Journal of Chemical Theory and Computation 12(1): 405-413.

Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L. 2012. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Research 40(D1): D370-D376.

Loo, J.S.E., Emtage, A.L., Ng, K.W., Yong, A.S.J. & Doughty, S.W. 2018. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment. Journal of Molecular Graphics and Modelling 80: 38-47.

Maillet, E.L., Cui, M., Jiang, P., Mezei, M., Hecht, E., Quijada, J., Margolskee, R.F., Osman, R. & Max, M. 2015. Characterization of the binding site of aspartame in the human sweet taste receptor. Chem. Senses 40(8): 577-586.

Masuda, K., Koizumi, A., Nakajima, K., Tanaka, T., Abe, K., Misaka, T. & Ishiguro, M. 2012. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds. PLoS ONE 7(4): e35380.

Masuda, T. & Kitabatake, N. 2006. Developments in biotechnological production of sweet proteins. Journal of Bioscience and Bioengineering 102(5): 375-389.

Mukherjee, S. & Zhang, Y. 2011. Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19(7): 955-966.

Nakajima, K-I., Yokoyama, K., Koizumi, T., Koizumi, A., Asakura, T., Terada, T., Masuda, K., Ito, K., Shimizu-Ibuka, A., Misaka, T. & Abe, K. 2011. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.  PLoS ONE 6(4): e19448.

Nakajima, K., Morita, Y., Koizumi, A., Asakura, T., Terada, T., Ito, K., Shimizu-Ibuka, A., Maruyama, J., Kitamoto, K., Misaka, T. & Abe, K. 2008. Acid-induced sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic interaction with human sweet taste receptor. FASEB J. 22(7): 2323-2330.

Ohkubo, T., Tamiya, M., Abe, K. & Ishiguro, M. 2015. Structural basis of pH dependence of neoculin, a sweet taste-modifying protein. PloS ONE 10(5): e0126921.

Ohta, K., Masuda, T., Tani, F. & Kitabatake, N. 2011. Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2-T1R3 sweet receptors. Biochemical and Biophysical Research Communications 413(1): 41-45.

Oshiro, C., Bradley, E.K., Eksterowicz, J., Evensen, E., Lamb, M.L., Lanctot, J.K., Putta, S., Stanton, R. & Grootenhuis, P.D.J. 2004. Performance of 3D-Database molecular docking studies into homology models. Journal of Medicinal Chemistry 47(3): 764-767.

Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. 2005. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research 33(2): W363-W367.

Shrivastav, A. & Srivastava, S. 2013. Human sweet taste receptor: Complete structure prediction and evaluation. International Journal of Chemical and Analytical Science 4(1): 24-32.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Weizhong, L., Lopez, R., McWilliam, H., Remmert, M. & Söding, J. 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7(1): 539.

Veselovsky, A.V., Ivanov, Y.D., Ivanov, A.S., Archakov, A.I., Lewi, P. & Janssen, P. 2002. Protein–protein interactions: Mechanisms and modification by drugs. Journal of Molecular Recognition 15(6): 405-422.

Wallace, A.C., Laskowski, R.A. & Thornton, J.M. 1995. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering 8(2): 127-134.

Yamashita, H., Theerasilp, S., Aiuchi, T., Nakaya, K., Nakamura, Y. & Kurihara. 1990. Purification and complete amino acid sequence of a new type of sweet protein with taste-modifying activity, curculin. The Journal of Biochemical Chemistry 265(6): 15770-15775.

Yang, J., Roy, A. & Zhang, Y. 2013. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29(20): 2588-2595.

Yarnitzky, T., Levit, A. & Niv, M.Y. 2010. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr. Opin. Drug Discov. Devel. 13(3): 317-325.

 

*Corresponding author; email: r-bahiah@utm.my

 

 

 

 

previous