Sains Malaysiana 49(3)(2020): 517-525
http://dx.doi.org/10.17576/jsm-2020-4903-06
Exploring the Molecular Interactions between Neoculin and the Human Sweet Taste Receptors through Computational
Approaches
(Meneroka Interaksi Molekul antara Neokulin dan Reseptor Rasa Manis Manusia melalui
Pendekatan Pengiraan)
RAGHEED HUSSAM YOUSIF1, HABIBAH A. WAHAB2,
KAMYAR SHAMELI1 & NURUL BAHIYAH AHMAD KHAIRUDIN1*
1Department of Environment and Green Technology, Malaysia-Japan
International Institute of Technology, Universiti
Teknologi Malaysia, Jalan
Sultan Yahya Petra, 54100 Kuala Lumpur,
Federal Territory, Malaysia
2School of Pharmaceutical Sciences, Universiti
Sains Malaysia, 11800 Universiti
Sains Malaysia, Pulau
Pinang, Malaysia
Received: 24 May 2019/Accepted: 5 December 2019
ABSTRACT
Neoculin is a sweet taste protein capable of modifying sour taste
into sweet taste. Neoculin, along with
other sweeteners, are received by the human sweet taste receptors
T1R2 and T1R3. To date, there has been few studies regarding how
neoculin interacts with the human sweet
taste receptors in molecular level. In this study, computational
approaches were applied to elucidate how neoculin interact with T1R2 and T1R3 at molecular level. In
order to achieve this research, homology modeling for T1R2 and T1R3
was performed to predict their structure. A protein-protein docking
study was conducted between neoculin and
T1R2 and T1R3, which displayed a strong relationship with the previous
experimental findings regarding the important residues of neoculin,
and how they interact with the ATD domain of T1R3. These residues
are His11, Asp91, Tyr21, Asn44, Arg48, Tyr 65, Val72, and Phe94.
The best docked complexes were then subjected to molecular dynamics
simulation for further analysis. The molecular dynamics simulation
results showed the contributions of the important residues of neoculin
in forming hydrogen bonds with the residues of the receptors. The
binding energy between neoculin and each
of T1R2 and T1R3 were also calculated. These results concluded that
neoculin sweet taste and taste modifying abilities are only
active when it binds to the amino terminal domain of T1R3.
Keywords: Homology modeling; molecular dynamics simulation;
neoculin; protein-protein docking; T1R2\T1R3
ABSTRAK
Neokulin adalah
protein rasa manis yang mampu
mengubah rasa masam
menjadi rasa manis. Neokulin, seperti pemanis lain, diterima
oleh reseptor
perasa manis manusia
iaitu T1R2 dan
T1R3. Sehingga kini, sudah terdapat beberapa kajian yang dijalankan untuk mengenal pasti bagaimana neokulin berinteraksi dengan reseptor kemanisan pada peringkat molekul. Dalam kajian ini, kaedah
pengiraan digunakan
untuk memperjelaskan bagaimana neokulin berinteraksi dengan T1R2 dan T1R3 pada tahap
molekul. Bagi
menjalankan kajian ini, permodelan homologi untuk T1R2 dan T1R3 telah dijalankan untuk menjangkakan struktur tersebut. Kajian pendokkan protein-protein telah
dijalankan antara neokulin dan T1R2 serta T1R3, yang menunjukkan terdapat hubungan yang kuat dengan penemuan
kajian sebelumnya
mengenai sisa penting
neokulin dan
bagaimana ia berinteraksi
bersama domain ATD kepada
T1R3. Sisa tersebut
adalah His11, Asp91, Tyr21, Asn44, Arg48, Tyr 65, Val72 dan Phe94. Kompleks dok terbaik itu
kemudiannya diuji
kepada simulasi dinamik molekul untuk analisis lanjutan. Hasil simulasi dinamik molekul menunjukkan sumbangan daripada sisa penting neokulin
dalam membentuk
ikatan hidrogen dengan sisa reseptor.
Tenaga yang mengikat antara
Neokulin dan
setiap T1R2 dan T1R3 juga turut dihitung.
Keputusan ini
menyimpulkan bahawa rasa manis neokulin dan kebolehan mengubah
suai adalah
aktif hanya apabila
ia mengikat
kepada domain terminal amino T1R3.
Kata kunci:
Neokulin; pemodelan
homologi; pendokkan protein-protein;
simulasi molekul
dinamik; T1R2\T1R3
REFERENCES
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang,
J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST
and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Res. 25(17): 3389-3402.
Assadi-Porter,
F.M., Maillet, E.L., Radek, J.T., Quijada, J., Markley, J.L. &
Max, M. 2010. Key amino acid residues involved in multi-point binding
interactions between brazzein, a sweet protein, and the T1R2‚T1R3
human sweet receptor. Journal of Molecular Biology 398(4): 584-599.
Binkowski,
T.A., Naghibzadeh, S. & Liang, J. 2003. CASTp: Computed atlas
of surface topography of proteins. Nucleic
Acids Res. 31(13): 3352-3355.
Castleman,
P.N., Sears, C., Cole, J.A., Baker, D.L. & Parrill, A.L. 2018.
GPCR homology model template selection benchmarking: Global versus
local similarity measures. Journal of Molecular Graphics and Modelling 86: 235-246.
Cheron,
J.B., Golebiowski, J., Antonczak, S. & Fiorucci, S. 2017. The
anatomy of mammalian sweet taste receptors. Proteins
85(2): 332-341.
Comeau,
S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. 2004. ClusPro:
A fully automated algorithm for protein-protein docking. Nucleic Acids Research 32(2): W96-W99.
Cuff,
J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M. & Barton, G.J.
1998. JPred: A consensus secondary structure prediction server.
Bioinformatics 14(10): 892-893.
Cui, M.,
Jiang, P.H., Maillet, E., Max, M., Margolskee, R.F. & Roman
Osman. 2006. The heterodimeric sweet taste receptor has multiple
potential ligand binding sites. Current
Pharmaceutical Design 12(35): 4591-4600.
Dias,
R. & de Azevedo Jr., W.F. 2008. Molecular docking algorithms.
Current Drug Targets 9(12): 1040-1047.
Eswar,
N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D.,
Shen, M-Y., Pieper, U. & Sali, A. 2007. Comparative protein
structure modeling using MODELLER. Current
Protocols in Protein Science 50(1): 2.9.1-2.9.31.
Fischer,
G., Rossmann, M. & Hyvönen, M. 2015. Alternative modulation
of protein-protein interactions by small molecules. Current Opinion in Biotechnology 35: 78-85.
Ho, B.K.
& Brasseur, R. 2005. The Ramachandran plots of glycine and pre-proline.
BMC Structural Biology
5: 14.
Huang,
S-Y. 2015. Exploring the potential of global protein-protein docking:
An overview and critical assessment of current programs for automatic
ab initio docking. Drug Discovery Today 20(8): 969-977.
Kastritis,
P.L. & Bonvin, A.M.J.J. 2013. The binding affinity of macromolecular
interactions: Daring to ask why proteins interact. Journal of The Royal Society Interface 10(79): 20120835.
Kim, S.K.,
Chen, Y., Abrol, R., Goddard, W.A. & Guthrie, B. 2017. Activation
mechanism of the G protein-coupled sweet receptor heterodimer with
sweeteners and allosteric agonists. Proc.
Natl. Acad. Sci. USA 114(10): 2568-2573.
Koizumi,
T., Terada, T., Nakajima, K-I., Kojima, M., Koshiba, S., Matsumura,
Y., Kaneda, K., Asakura, T., Shimizu-Ibuka, A., Abe, K. & Misaka,
T. 2015. Identification of key neoculin residues responsible for
the binding and activation of the sweet taste receptor.
Scientific Reports 5: 12947.
Koizumi,
A., Nakajima, K., Asakura, T., Morita, Y., Ito, K., Shmizu-Ibuka,
A., Misaka, T. & Abe, K. 2007. Taste-modifying sweet protein,
neoculin, is received at human T1R3 amino terminal domain. Biochemical
and Biophysical Research Communications 358(2): 585-589.
Kozakov,
D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov,
D. & Vajda, S. 2017. The ClusPro web server for protein-protein
docking. Nat. Protoc. 12(2): 255-278.
Kumari,
R., Kumar, R., Open Source Drug Discovery Consortium. & Lynn,
A. 2014. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations.
Journal of Chemical Information and Modeling
54(7): 1951-1962.
Kurimoto,
E., Suzuki, M., Amemiya, E., Yamaguchi, Y., Nirasawa, S., Shimba,
N., Xu, N., Kashiwagi, T., Kawai, M., Suzuki, E. & Kato, K.
2007. Curculin exhibits sweet-tasting and taste-modifying activities
through its distinct molecular surfaces. Journal
of Biological Chemistry 282(46): 33252-33256.
Lee, J.,
Cheng, Xi., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A.,
Wei, S., Buckner, J., Jeong, J.C., Qi, Y.F., Jo, S.H., Pande, V.S.,
Case, D.A.,
Brooks, III, C.L.,
MacKerell Jr., A.D., Klauda, J.B.
& Im, W.P. 2015.
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and
CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal
of Chemical Theory and Computation 12(1): 405-413.
Lomize,
M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L.
2012. OPM database and PPM web server: Resources for positioning
of proteins in membranes. Nucleic
Acids Research 40(D1): D370-D376.
Loo, J.S.E.,
Emtage, A.L., Ng, K.W., Yong, A.S.J. & Doughty, S.W. 2018. Assessing
GPCR homology models constructed from templates of various transmembrane
sequence identities: Binding mode prediction and docking enrichment.
Journal of Molecular Graphics
and Modelling 80: 38-47.
Maillet,
E.L., Cui, M., Jiang, P., Mezei, M., Hecht, E., Quijada, J., Margolskee,
R.F., Osman, R. & Max, M. 2015. Characterization of the binding
site of aspartame in the human sweet taste receptor. Chem.
Senses 40(8): 577-586.
Masuda,
K., Koizumi, A., Nakajima, K., Tanaka, T., Abe, K., Misaka, T. &
Ishiguro, M. 2012. Characterization of the modes of binding between
human sweet taste receptor and low-molecular-weight sweet compounds.
PLoS ONE 7(4): e35380.
Masuda,
T. & Kitabatake, N. 2006. Developments in biotechnological production
of sweet proteins. Journal
of Bioscience and Bioengineering 102(5): 375-389.
Mukherjee,
S. & Zhang, Y. 2011. Protein-protein complex structure predictions
by multimeric threading and template recombination. Structure 19(7): 955-966.
Nakajima,
K-I., Yokoyama, K., Koizumi, T., Koizumi, A., Asakura, T., Terada,
T., Masuda, K., Ito, K., Shimizu-Ibuka, A., Misaka, T. & Abe,
K. 2011. Identification and modulation of the key amino acid residue
responsible for the pH sensitivity of neoculin, a taste-modifying
protein. PLoS ONE 6(4): e19448.
Nakajima,
K., Morita, Y., Koizumi, A., Asakura, T., Terada, T., Ito, K., Shimizu-Ibuka,
A., Maruyama, J., Kitamoto, K., Misaka, T. & Abe, K. 2008. Acid-induced
sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic
interaction with human sweet taste receptor. FASEB J. 22(7): 2323-2330.
Ohkubo,
T., Tamiya, M., Abe, K. & Ishiguro, M. 2015. Structural basis
of pH dependence of neoculin, a sweet taste-modifying protein. PloS ONE 10(5): e0126921.
Ohta,
K., Masuda, T., Tani, F. & Kitabatake, N. 2011. Introduction
of a negative charge at Arg82 in thaumatin abolished responses to
human T1R2-T1R3 sweet receptors. Biochemical
and Biophysical Research Communications 413(1): 41-45.
Oshiro,
C., Bradley, E.K., Eksterowicz, J., Evensen, E., Lamb, M.L., Lanctot,
J.K., Putta, S., Stanton, R. & Grootenhuis, P.D.J. 2004. Performance
of 3D-Database molecular docking studies into homology models. Journal of Medicinal Chemistry 47(3): 764-767.
Schneidman-Duhovny,
D., Inbar, Y., Nussinov, R. & Wolfson, H.J. 2005. PatchDock
and SymmDock: Servers for rigid and symmetric docking. Nucleic
Acids Research 33(2): W363-W367.
Shrivastav,
A. & Srivastava, S. 2013. Human sweet taste receptor: Complete
structure prediction and evaluation. International
Journal of Chemical and Analytical Science 4(1): 24-32.
Sievers,
F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Weizhong, L.,
Lopez, R., McWilliam, H., Remmert, M. & Söding, J. 2011. Fast,
scalable generation of high‐quality protein multiple sequence
alignments using Clustal Omega. Molecular Systems Biology 7(1): 539.
Veselovsky,
A.V., Ivanov, Y.D., Ivanov, A.S., Archakov, A.I., Lewi, P. &
Janssen, P. 2002. Protein–protein interactions: Mechanisms and modification
by drugs. Journal of Molecular Recognition 15(6):
405-422.
Wallace,
A.C., Laskowski, R.A. & Thornton, J.M. 1995. LIGPLOT: A program
to generate schematic diagrams of protein-ligand interactions. Protein Engineering 8(2): 127-134.
Yamashita,
H., Theerasilp, S., Aiuchi, T., Nakaya, K., Nakamura, Y. & Kurihara.
1990. Purification and complete amino acid sequence
of a new type of sweet protein with taste-modifying activity, curculin.
The Journal of Biochemical
Chemistry 265(6): 15770-15775.
Yang,
J., Roy, A. & Zhang, Y. 2013. Protein-ligand binding site recognition
using complementary binding-specific substructure comparison and
sequence profile alignment. Bioinformatics
29(20): 2588-2595.
Yarnitzky,
T., Levit, A. & Niv, M.Y. 2010. Homology modeling of G-protein-coupled
receptors with X-ray structures on the rise. Curr. Opin. Drug Discov. Devel. 13(3): 317-325.
*Corresponding
author; email: r-bahiah@utm.my
|