Sains Malaysiana 49(4)(2020): 929-940
http://dx.doi.org/10.17576/jsm-2020-4904-22
Hybrid Multistep Block Method for Solving Neutral Delay
Differential Equations
(Kaedah Blok Berbilang Langkah HibridBagi Menyelesaikan PersamaanPembezaan Lengah Neutral)
NUR
INSHIRAH NAQIAH ISMAIL1, ZANARIAH ABDUL MAJID1,2*
& NORAZAK SENU1
1Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
2Department of Mathematics, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 26 September 2019/Accepted:
13 January 2020
ABSTRACT
The initial-value problem for first order
single linear neutral delay differential equations (NDDEs) of constant
and pantograph delay types have been solved by using hybrid multistep
block method. The method has been derived by applying Taylor series
interpolation polynomial and implementing the predictor-corrector
formulas in PE(CE)m mode where m is the number of iterations for the proposed
method. Both types of NDDEs
will be solved at two-point simultaneously including the off-step
point with constant step-size. In order to find the solution for
NDDEs, the delay solutions of the unknown function will be interpolated
using Lagrange interpolation polynomial and the derivative of the
delay solutions will be obtained by applying divided difference
formula. The order, consistency and convergence of the proposed method
have been discussed
in detail in the methods section. The properties of stability region for NDDEs have also
been analysed. Numerical
results presented have concluded that the proposed method is comparable
with the existing method and is assumed to be reliable for solving
first order NDDEs with constant and pantograph delay.
Keywords: Constant delay; multistep block
method; neutral delay differential equations; off-step point; pantograph delay
ABSTRAK
Masalah
nilai permulaan untuk terbitan pertama tunggal linear Persamaan Pembezaan Lengah Neutral
(PPLN) bagi jenis kelengahan malar dan pantograf telah diselesaikan
dengan menggunakan kaedah blok berbilang langkah hibrid. Kaedah ini
diperoleh dengan menggunakan polinomial penyuaian siri Taylor dan
melaksanakan rumusan peramal pembetul dalam mod PE(CE)m dengan m
adalah bilangan pengulangan bagi kaedah yang dicadangkan.
Kedua-dua jenis PPLN akan diselesaikan pada dua titik serentak termasuk
titik luar langkah dengan saiz langkah yang malar. Bagi mencari
penyelesaian untuk PPLN, nilai kelengahan bagi fungsi yang tidak
diketahui akan diperoleh melalui penggunaan polinomial penyuaian
Lagrange dan pembezaan penyelesaian kelengahan akan diperoleh dengan
menggunakan formula perbezaan pembahagian. Penentuan peringkat, tahap ketekalan dan penumpuan
bagi kaedah yang dicadangkan telah dibincangkan secara terperinci
dalam bahagian metod. Ciri-ciri kawasan kestabilan untuk PPLN juga
telah dianalisis. Keputusan berangka yang dibentangkan telah menyimpulkan
bahawa kaedah yang dicadangkan adalah setanding dengan kaedah yang
telah sedia ada dan dianggap dapat menyelesaikan peringkat pertama
PPLN dengan kelengahan malar dan pantograf.
Kata kunci: Kaedah blok berbilang langkah; ketundaan malar; ketundaan pantograf; persamaan pembezaan lengah
neutral; titik luar langkah
REFERENCES
Ahmad, J. & Fatima, N. 2016. Analytical exact solution of
neural functional differential equations. Universal Journal of
Computational Mathematics 4(2): 24-28.
Baker,
C.T., Bocharov, G. & Rihan,
F.A.R. 2008. Neutral delay differential equations in the modeling of cell
growth. Applied
Mathematics Group Research Report 2008: 1. Chester, United Kingdom: University
of Chester.
Bellen, A. & Guglielmi, N. 2009.
Solving neutral delay differential equations with state dependent delays. Journal
of Computational and Applied Mathematics 229(2): 350-362.
Bellen, A., Jackiewicz,
Z. & Zennaro, M. 1988. Stability analysis of
one-step methods for neutral delay differential equations. Numerische Mathematik 52(6):
605-619.
Biazar, J. & Ghanbari, B. 2012. The homotopy perturbation method for solving neutral functional
differential equations with proportional delays. Journal of King Saud
University-Science 24(1): 33-37.
Chen, X. & Wang, L. 2010. The variational iteration method for solving a neutral functional differential equation with
proportional delays. Computers and Mathematics with Applications 59(8):
2696-2702.
Ibrahim, Z.B., Zainuddin, N.,
Othman, K.I., Suleiman, M. & Zawawi, I.S.M. 2019.
Variable order block method for solving second order ordinary differential
equations. Sains Malaysiana 48(8):
1761-1769.
Ishak, F. & Ramli, M.S.B. 2015.
Implicit block method for solving neutral delay differential equations.
In AIP Conference Proceedings. Volume 1682: 020054. AIP Publishing.
Ishak, F., Suleiman, M.B. & Majid, Z.A. 2014. Numerical
solution and stability of block method for solving functional differential
equations. In Transactions on Engineering Technologies Dordrecht:
Springer. pp. 597-609.
Ishak, F., Suleiman, M.B. & Majid, Z.A. 2013. Block method for
solving pantograph type functional differential equations. In Proceedings
of the World Congress on Engineering Volume II.
Ismail, N.I.N., Majid,
Z.A. & Senu, N. 2019. Explicit multistep block
method for solving neutral delay differential equation. ASM Science Journal
(IQRAC2018) 12(1): 24-32.
Ismail, F., Ahmad, S.Z., Jikantoro,
Y.D. & Senu, N. 2018. Block hybrid method with
trigonometric-fitting for solving oscillatory problems. Sains Malaysiana 47(9):
2223-2230.
Jackiewicz, Z. 1987. Variable-step variable-order algorithm for the
numerical solution of neutral functional differential equations. Applied
Numerical Mathematics 3(4): 317-329.
Jackiewicz, Z. 1986. Quasilinear multistep methods and variable step
predictor-corrector methods for neutral functional differential
equations. SIAM Journal on Numerical Analysis 23(2): 423-452.
Jackiewicz, Z. 1984. One-step methods of any order for neutral
functional differential equations. SIAM Journal on Numerical Analysis 21(3):
486-511.
Jackiewicz, Z. 1982. Adams methods for neutral functional differential
equations. Numerische Mathematik 39(2):
221-230.
Jackiewicz, Z. & Lo, E. 2006. Numerical solution of neutral functional
differential equations by Adams methods in divided difference form. Journal
of Computational and Applied Mathematics 189(1-2): 592-605.
Jackiewicz, Z. & Lo, E. 1991. The numerical solution of neutral
functional differential equations by Adams predictor-corrector methods. Applied
Numerical Mathematics 8(6): 477-491.
Kuang, Y. 1993. Delay Differential Equations: With
Applications in Population Dynamics. Volume 191. Boston: Academic Press.
Lambert, J.D. 1973. Computational Methods in Ordinary Differential
Equations. London: Wiley.
Liu, M., Dassios, I. & Milano,
F. 2019. On the stability analysis of systems of neutral delay differential
equations. Circuits, Systems, and Signal Processing 38(4):
1639-1653.
Lv, X. & Gao, Y. 2013. The RKHSM for solving neutral
functional differential equations with proportional delays. Mathematical
Methods in the Applied Sciences 36(6): 642-649.
Majid, Z.A. & Mohamed, N.A. 2019. Fifth order multistep
block method for solving volterra integro-differential
equations of second kind. Sains Malaysiana 48(3): 677-684.
Majid, Z.A. & Suleiman, M. 2011. Predictor-corrector
block iteration method for solving ordinary differential equations. Sains Malaysiana 40(6):
659-664.
Sakar, M.G. 2017. Numerical solution of neutral functional
differential equations with proportional delays. An International
Journal of Optimization and Control: Theories & Applications (IJOCTA) 7(2):
186-194.
Seong, H.Y. & Majid, Z.A. 2015. Solving neutral delay
differential equations of pantograph type by using multistep block method.
In 2015 International Conference on Research and Education in
Mathematics (ICREM7). pp. 56-60.
Süli, E. & Mayers, D.F. 2003. An
Introduction to Numerical Analysis. New York: Cambridge University Press.
Wang, W.S. & Li, S.F. 2007. On the one-leg θ-methods
for solving nonlinear neutral functional differential equations. Applied
Mathematics and Computation 193(1): 285-301.
Wang, W., Zhang, Y. & Li, S. 2009. Stability of
continuous Runge-Kutta-Type
methods for nonlinear neutral delay differential equations. Applied
Mathematical Modelling 33(8): 3319-3329.
*Corresponding
author; email: am_ zana@upm.edu.my
|